Skip to main content

The fuzziness and sensitivity of failure probabilities

  • Chapter
Analyzing Uncertainty in Civil Engineering

Summary

In this article, we scrutinize basic issues concerning the interpretation of probability in the probabilistic safety concept. Using simple geotechnical design problems we demonstrate that the failure probability depends in an extremely sensitive way on the choice of the input distribution function. We conclude that the failure probability has no meaning as a frequency of failure. It may supply, however, a useful means for decision making under uncertainty. We suggest a number of alternatives, as interval probability, random and fuzzy sets, which serve the same purpose in a more robust way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.B. Baecher and J.T. Christian. Risk analysis and the safety of dams. Keynote Address, 4th Cairo International Conference on Geotechnical Engineering, Cairo University, January 2000.

    Google Scholar 

  2. V. V. Bolotin. Statistical Methods in Structural Mechanics. Holden-Day, Inc., San Francisco, 1969.

    Google Scholar 

  3. E. Bösinger. Serienuntersuchungen zum Vergleich verschiedenener Rahmenschergeräte. Institut für Bodenmechanik und Felsmechanik der Universität Karlsruhe, personal communication, 1996.

    Google Scholar 

  4. H. Bühlmann. Mathematical Methods in Risk Theory. Springer-Verlag, Berlin 1970.

    Google Scholar 

  5. G. De Cooman, T. Fine, and T. Seidenfeld, editors. ISIPTA’01, Proceedings of the Second International Symposium on Imprecise Probabilities and Their Applications. Shaker Publishing BV, Maastricht, 2001.

    Google Scholar 

  6. H. Einstein. Quantifying uncertain engineering geologic information. Felsbau, 19(5):72–84, 2001.

    Google Scholar 

  7. I. Elishakoff. What may go wrong with probabilistic methods? In I. Elishakoff, editor, Whys and Hows in Uncertainty Modelling: Probability, Fuzziness and Anti-Optimization, volume 388 of CISM Courses and Lectures, pages 265–283. Springer, Wien, New York, 1999.

    Google Scholar 

  8. Th. Fetz and M. Oberguggenberger. Propagation of uncertainty through multivariate functions in the framework of sets of probability measures. Reliability Engineering and Systems Safety, 85:73–87, 2004.

    Google Scholar 

  9. D.V. Griffiths and A. Fenton. Bearing capacity of spatially random soil: the undrained clay Prandtl problem revisited. Geotechnique, 51(4):351–359, 2001.

    Google Scholar 

  10. O. Klingmüller and U. Bourgund. Sicherheit und Risiko im Konstruktiven Ingenieurbau. Verlag Vieweg, Braunschweig/Wiesbaden, 1992.

    Google Scholar 

  11. M. W. McCann. National Performance of Dams Program. Stanford University, http: //npdp.stanford.edu/center.html.

    Google Scholar 

  12. M. A. Meyer, J. M. Booker. Eliciting and Analyzing Expert Judgement. SIAM, Philadelphia PA, 2001.

    Google Scholar 

  13. M. Oberguggenberger. The mathematics of uncertainty: models, methods and interpretations. In this volume.

    Google Scholar 

  14. ÖNORM B4433. Erd-und Grundbau, Böschungsbruchberechnung, 1987.

    Google Scholar 

  15. ÖNORM B4435-2. Erd-und Grundbau, Flächengründungen, EUROCODEnahe Berechnung der Tragfähigkeit, 1999.

    Google Scholar 

  16. ÖNORM ENV 1991-1. Eurocode 1: Grundlagen der Tragwerksplanung und Einwirkung auf Tragwerke, Teil 1: Grundlagen der Tragwerksplanung, 1996.

    Google Scholar 

  17. ÖNORM ENV 1997-1. Eurocode 7: Entwurf, Berechnung und Bemessung in der Geotechnik, Teil 1: Allgemeine Regeln, 1996.

    Google Scholar 

  18. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes. Cambridge University Press, 2nd edition, 1992.

    Google Scholar 

  19. B. Schuppener. Die Festlegung charakteristischer Bodenkennwerte — Empfehlungen des Eurocodes 7 Teil 1 und die Ergebnisse einer Umfrage. Geotechnik, Sonderheft:32–35, 1999.

    Google Scholar 

  20. A. Weißenbach, G. Gudehus, and B. Schuppener. Vorschläge zur Anwendung des Teilsicherheitskonzeptes in der Geotechnik. Geotechnik, Sonderheft:4–31, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oberguggenberger, M., Fellin, W. (2005). The fuzziness and sensitivity of failure probabilities. In: Fellin, W., Lessmann, H., Oberguggenberger, M., Vieider, R. (eds) Analyzing Uncertainty in Civil Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26847-2_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-26847-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22246-0

  • Online ISBN: 978-3-540-26847-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics