Skip to main content

Large Scale Urban Simulations with FCT

  • Chapter
Flux-Corrected Transport

Part of the book series: Scientific Computation ((SCIENTCOMP))

Summary

Airborne contaminant transport in cities presents challenging new requirements for CFD. The unsteady flow physics is complicated by very complex geometry, multi-phase particle and droplet effects, radiation, latent, and sensible heating effects, and buoyancy effects. Turbulence is one of the most important of these phenomena and yet the overall problem is suRciently diRcult that the turbulence must be included eRciently with an absolute minimum of extra memory and computing time. This paper describes the Monotone Integrated Large Eddy Simulation (MILES) methodology used in NRL’s FAST3D-CT simulation model for urban contaminant transport (CT) (see [1] and references therein). We also describe important extensions of the underlying Flux-Corrected Transport (FCT) convection algorithms to further reduce numerical dissipation in narrow channels (streets).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Boris, The Threat of Chemical and Biological Terrorism: Preparing a Response, Comp. Science and Engineering 4, 22–32 (2002)

    Article  Google Scholar 

  2. Hazard Prediction and Assessment Capability, available at http://www.dtra.mil/td/acecenter/td_hpac_fact.html

    Google Scholar 

  3. T. Bauer and M. Wolski, Software User’s Manual for the Chemical/Biological Agent Vapor, Liquid, and Solid Tracking (VLSTRACK) Computer Model, Version 3.1, NSWCDD/TR-01/83, April 2001

    Google Scholar 

  4. ALOHA Users Manual, 1999. Available for download at: http://www.epa.gov/ceppo/cameo/pubs/aloha.pdf. Additional information: http://response.restoration.noaa.gov/cameo/aloha.html

    Google Scholar 

  5. J.M. Leone, J.S. Nasstrom, D.M. Maddix, D.J. Larsen, and G. Sugiyama, LODI User’s Guide, Version 1.0, Lawrence Livermore National Laboratory, Livermore CA (2001)

    Google Scholar 

  6. S. Aliabadi and M. Watts, Contaminant Propagation in Battlespace Environments and Urban Areas, AHPCRC Bulletin, Vol. 12, No 4 (2002), in http://www.ahpcrc.org/publications/archives/v12n4/Story3/

    Google Scholar 

  7. S. Chan, FEM3C — An Improved Three-Dimensional Heavy-Gas Dispersion Model: User’s Manual, UCRL-MA-116567, Rev. 1, Lawrence Livermore National Laboratory, Livermore, CA (1994)

    Book  Google Scholar 

  8. F. Camelli and R. Löhner, Assessing Maximum Possible Damage for Release Events, Seventh Annual George Mason University Transport and Dispersion Modeling Workshop, June 2003

    Google Scholar 

  9. P. Sagaut, Large Eddy Simulation for Incompressible Flows, Springer, New York (2002)

    MATH  Google Scholar 

  10. F.F. Grinstein & G.E. Karniadakis (Editors), Alternative LES and Hybrid RANS/LES, J. Fluids Engineering 124, 821–942 (2002)

    Google Scholar 

  11. J.P. Boris, On Large Eddy Simulation Using Subgrid Turbulence Models, in Whither Turbulence? Turbulence at the Crossroads, J.L. Lumley Ed., Springer, New York, 344 (1989)

    Google Scholar 

  12. J.P. Boris, F.F. Grinstein, E.S. Oran, and R.J. Kolbe, New Insights into Large Eddy Simulation, Fluid Dynamics Research 10, 199–228 (1992)

    Article  ADS  Google Scholar 

  13. E.S. Oran and J.P. Boris, Computing Turbulent Shear Flows — A Convenient Conspiracy, Computers in Physics 75, 523–533 (1993)

    Google Scholar 

  14. C. Fureby and F.F. Grinstein, Monotonically Integrated Large Eddy Simulation of Free Shear Flows, AIAA Journal 37, 544–556 (1999)

    Article  ADS  Google Scholar 

  15. C. Fureby and F.F. Grinstein, Large Eddy Simulation of High Reynolds-Number Free & Wall-Bounded Flows, Journal of Computational Physics 18168 (2002)

    Google Scholar 

  16. F.F. Grinstein and C. Fureby, Recent Progress on MILES for High Reynolds-Number Flows, Journal of Fluids Engineering 124848 (2002)

    Google Scholar 

  17. B.Z. Cybyk, J.P. Boris, T.R. Young, C.A. Lind, and A.M. Landsberg, A Detailed Contaminant Transport Model for Facility Hazard Assessment in Urban Areas, AIAA Paper 99-3441 (1999)

    Google Scholar 

  18. B.Z. Cybyk, J.P. Boris, T.R. Young, M.H. Emery, and S.A. Cheatham, Simulation of Fluid Dynamics Around Complex Urban Geometries, AIAA Paper 2001-0803 (2001)

    Google Scholar 

  19. J.P. Boris and D.L. Book, Flux-Corrected Transport I, SHASTA, A Fluid Transport Algorithm that Works, Journal of Computational Physics 11, 8–69 (1973)

    Article  ADS  Google Scholar 

  20. J.P. Boris, and D.L. Book, Solution of the Continuity Equation by the Method of Flux-Corrected Transport, Methods in Computational Physics 16, 85–129 (1976)

    Google Scholar 

  21. J.P. Boris, A.M. Landsberg, E.S. Oran and J.H. Gardner, LCPFCT-A Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations. U.S. Naval Research Laboratory Memorandum Report NRL/MR/6410-93-7192 (1993)

    Google Scholar 

  22. S.D. Mayor, P.R. Spalart, and G.J. Tripoli, Application of a Perturbation Recycling Method in the Large-Eddy Simulation of a Mesoscale Convective Internal Boundary Layer, J. Atmos. Sci. 592385 (2002)

    Google Scholar 

  23. J.P. Bonnet, C. Coiffet, J. Delville, Ph. Druault, E. Lamballais, J.F. Largeau, S. Lardeau, and L. Perret, The Generation of Realistic 3D Unsteady Inlet Conditions for LES, AIAA 2003-0065 (2002)

    Google Scholar 

  24. M.J. Dwyer, E.G. Patton, and R.H. Shaw, Boundary-Layer Meteorology, 84, 23–43 (1997)

    Article  ADS  Google Scholar 

  25. A.M. Landsberg, T.R. Young, and J.P. Boris, An ERcient Parallel Method for solving Flows in Complex Three-Dimensional Geometries, AIAA Paper 94-0413 (1994)

    Google Scholar 

  26. S. Pal Arya, Introduction to Micrometeorology, Academic Press (1988)

    Google Scholar 

  27. C. Hirsch, Numerical Computation of Internal and External Flows, J. Wiley and Sons (1999)

    Google Scholar 

  28. H. Jasak, H.G. Weller, and A.D. Gosman, High Resolution NVD Differencing Scheme for Arbitrarily Unstructured Meshes, Int. J. Numer. Meth. Fluids 31, 431 (1999)

    Article  MATH  Google Scholar 

  29. J. Pullen, J.P. Boris, T.R. Young, G. Patnaik, and J.P. Iselin, Comparing Studies of Plume Morphology using a Puff Model and an Urban High-Resolution Model, Seventh Annual George Mason University Transport and Dispersion Modeling Workshop, June 2003

    Google Scholar 

  30. J.P. Boris, K. Obenschain, G. Patnaik, and T.R. Young, CT-ANALYSTTM, Fast and Accurate CBR Emergency Assessment, Proceedings of the 2nd International Conference on Battle Management, Williamsburg, VA, 4–8 November 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patnaik, G., Boris, J.P., Grinstein, F.F., Iselin, J.P. (2005). Large Scale Urban Simulations with FCT. In: Kuzmin, D., Löhner, R., Turek, S. (eds) Flux-Corrected Transport. Scientific Computation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27206-2_4

Download citation

Publish with us

Policies and ethics