Skip to main content

Azonale und extrazonale Lebensräume - Vom höchsten Punkt zur tiefsten Stelle

  • Chapter
Allgemeine Geobotanik

Part of the book series: Springer-Lehrbuch

  • 5537 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

17.8 Literatur-Gebirge

  • Aeschimann D, Lauber K, Moser DM, Theurillat JP (2004) Flora alpina. Ein Atlas sämtlicher 4500 Gefäßpflanzen der Alpen. 3 Bde, Haupt, Bern

    Google Scholar 

  • Agachanjanz OE (1985) Ein ökologischer Ansatz zur Höhenstufengliederung des Pamir-Altai. Petermanns Geogr Mitt 1: 17–23

    Google Scholar 

  • An ZS, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoon and phased uplift of the Himalayas-Tibetan plateau since late Miocene times. Nature 365: 143–147

    Google Scholar 

  • Böhmer HJ (1999) Vegetationsdynamik im Hochgebirge unter dem Einfluss natürlicher Störungen. Diss Bot 311, Borntraeger, Berlin

    Google Scholar 

  • Breckle S-W (1973) Mikroklimatische Messungen und ökologische Beobachtungen in der alpinen Stufe des afghanischen Hindukusch. Bot Jahrb System 93: 25–55

    Google Scholar 

  • Breckle S-W (1974) Notes an alpine and nival flora of the Hindu Kush, East Afghanistan. Bot Notiser (Lund) 127: 278–284

    Google Scholar 

  • Brozovic N, Burbank DW, Meigs AJ (1997) Climatic limits on landscape development in the Northwestern Himalaya. Science 276: 571–574

    CAS  ISI  Google Scholar 

  • Burga CA, Klötzli F, Grabherr G (2004) Gebirge der Erde. Landschaft, Klima, Pflanzenwelt. Ulmer, Stuttgart

    Google Scholar 

  • Butler DR, Hill C, Malanson GP, Cairns DM (1994) Stability of alpine treelines in Glacier National Park, Montana, USA. Phytocoenologia 22: 485–500

    Google Scholar 

  • Cernusca A (1976) Bestandesstruktur, Bioklima und Energiehaushalt von alpinen Zwergstrauchbeständen. Oecologia Plantarum 11: 71–102

    ISI  Google Scholar 

  • Christ H (1882) Das Pflanzenleben der Schweiz. 2. Aufl, Schulthess, Zürich

    Google Scholar 

  • Coldea G (2003) The alpine flora and vegetation of the South-Eastern Carpathians. Ecol Stud 167: 65–72

    Google Scholar 

  • Daubenmire RF (1954) Alpine timberline in the Americas and their interpretation. Butler University Botanical Studies 11: 119–136

    Google Scholar 

  • Diels L (1910) Genetische Elemente in der Flora der Alpen. Englers Bot Jahrb 44, 102

    Google Scholar 

  • Dierssen K (1996) Vegetation Nordeuropas. Ulmer, Stuttgart

    Google Scholar 

  • Ellenberg H (1966) Leben und Kampf an den Baumgrenzen der Erde. Naturwiss Rundsch 19: 133–139

    Google Scholar 

  • Favarger CP, Robert A (1995) Flore et végétation des Alpes. 3. Aufl, 2 Bde, Delachaux et Nestlé, Lausanne

    Google Scholar 

  • Franz H (1979) Ökologie der Hochgebirge. Ulmer, Stuttgart

    Google Scholar 

  • Furrer G, Fitze P (1970) Die Hochgebirgsstufe — ihre Abgrenzung mit Hilfe der Solifluktions-Stufe. Geogr Helvetica 5: 156–161

    Google Scholar 

  • Gams H (1938) Die nacheiszeitliche Geschichte der Alpenflora. Jahrb d Vereins zum Schutz der Alpenpflanzen und-tiere 10, München, S 9–34

    Google Scholar 

  • Gortschakovsky PL (1989) Horizontal and altitudinal differentiation of the vegetation cover of the Ural mountains. Pirineos 133: 33–54

    Google Scholar 

  • Grabherr G (1989) On community structure in high alpine grasslands. Vegetatio 83: 223–227

    Article  ISI  Google Scholar 

  • Grabherr G (1997) The high-mountain ecosystems of the Alps. In: Wielgolaski FE (ed) Polar and alpine tundra. Ecosystems of the World 3, Elsevier, Amsterdam, pp 97–121

    Google Scholar 

  • Grabherr G (2000) Biodiversity in mountain forests. In: Price M, Butt N (eds) Forests in sustainable mountain development. IUFRO Series No 5, CABI Publishing, Wallingford, pp 28–38

    Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effect on mountain plants. Nature 369: 448

    Article  ISI  Google Scholar 

  • Grishin SY (1995) The boreal forests of north-eastern Eurasia. Vegetatio 12: 11–21

    Google Scholar 

  • Grötzbach E, Rinschede G (1984) Beiträge zur vergleichenden Geographie der Hochgebirge. Eichstätter Beiträge 12, Pustet, Regensburg

    Google Scholar 

  • Häberli W, Beniston M (1998) Climate change and its impacts on glaciers and permafrost in the Alps. Ambio: 258–265

    Google Scholar 

  • Hegg O, Béguin C, Zoller H (1993) Altas schutzwürdiger Vegetationstypen der Schweiz. Bern

    Google Scholar 

  • Hermes K (1955) Die Lage der oberen Waldgrenze in den Gebirgen der Erde und ihr Abstand zur Schneegrenze. Kölner Geographische Arbeiten, Heft 5. Geographisches Institut der Universität Köln

    Google Scholar 

  • Hilbig W, Helmecke K, Schamsran Z (1993) Untersuchungen zur oberirdischen Pflanzenbiomasse von Rasengesellschaften in Gebirgen der Mongolei. Phytocoenologia 23: 201–226

    Google Scholar 

  • Hövermann J (1988) Das System der klimatischen Geomorphologie auf landschaftskundlicher Grundlage. Zeitschrift für Geomorphologie NF Suppl Bd 56: 143–153

    Google Scholar 

  • Holtmeier FK (1974) Die Höhengrenze der Gebirgswälder. Arbeiten aus dem Institut für Landschaftsökologie 8, Westf Wilhelms-Universität, Münster

    Google Scholar 

  • Holtmeier FK (2003) Mountain Timberlines — Ecology, Patchiness, and Dynamics. Advances in Global Change Research 14, Kluwer, Dordrecht

    Google Scholar 

  • Holzner W, Hübl E (1988) Vergleich zwischen Flora und Vegetation in der subalpin-alpinen Stufe in den japanischen Alpen und den Alpen Europas. Veröff Geobot Inst ETH, Stiftung Rübel 98: 299–329

    Google Scholar 

  • Hulten E (1972) The plant cover of Southern Kamtschatka. Ark Bot Ser 2,7,3: 181–257

    Google Scholar 

  • Jenik J (1997) The diversity of mountain life. In: Messerli B, Ives JD (eds) Mountains of the World. A global priority. Parthenon, New York, London, pp 199–231

    Google Scholar 

  • Klötzli F (1992) Alpine Vegetation: stabil und natürlich? In: Müller JP, Gilgen B (Hrsg) Die Alpen — ein sicherer Lebensraum? Schweizer Akad Naturwiss 5: 70–83

    Google Scholar 

  • Klotz G (ed, 1989) Hochgebirge der Erde und ihre Pflanzen-und Tierwelt Urania, Leipzig Jena Berlin

    Google Scholar 

  • Körner C (2003) Alpine Plant Life. Functional Plant Ecology of High Mountain Ecosystems. 2nd edn, Springer, Heidelberg

    Google Scholar 

  • Koons PO (1989) The topographic evolution of collisional mountain belts: A numerical look at the southern Alps. New Zealand. Am. J. Sci. 289: 1041–1069

    Google Scholar 

  • Kuhle M (1985) Gebirgslandschaften. Goltze, Göttingen

    Google Scholar 

  • Kuhle M (1987) Physisch-geographische Merkmale des Hochgebirges. Zur Ökologie von Höhenstufen und Höhengrenzen. Frankfurter Beiträge zur Didaktik der Geographie 10: 15–40

    Google Scholar 

  • Kullmann L (2002) Rapid recent range-margins rise of tree and shrub species in the Swedish Scandes. Journal of Ecology 90: 68–77

    Google Scholar 

  • Liew PM, Kuo CM, Huang SY, Tseng MH (1998) Vegetation change and terrestrial carbon storage in eastern Asia during the Last Glacial Maximum as indicated by a new pollen record from central Taiwan. Glob Planet Change 16–17: 85–94

    Google Scholar 

  • Mattes H (1982) Die Lebensgemeinschaft von Tannenhäher und Arve. Ber Eidgen Anstalt für forstliches Versuchswesen 241, Birmensdorf

    Google Scholar 

  • Messerli B (2004) Geleitwort zu CA Burga et al (ed) Gebirge der Erde. Ulmer, Stuttgart

    Google Scholar 

  • Messerli B, Ives JD (1997) Mountains of the World. A global priority. Parthenon, New York London

    Google Scholar 

  • Meurer M (1984) Höhenstufen von Klima und Vegetation. Geogr Rundsch 36: 395–403

    Google Scholar 

  • Nagy L, Grabherr G, Körner C, Thompson DBA (2003) Alpine biodiversity in Europe. Springer, Heidelberg

    Google Scholar 

  • Nakamura Y, Grandtner MM (1994) A comparative study of the alpine vegetation of eastern North America and Japan. In: Miyawaki A, Iwatsuki K, Grandtner MM (eds) Vegetation in Eastern North America. Tokyo University Press, pp 335–347

    Google Scholar 

  • Nakhutsrischvili G (1999) The vegetation of Georgia (Kaucasus). Braun-Blanquetia 15, Camerino

    Google Scholar 

  • Ozenda P (1988) Die Vegetation der Alpen im europäischen Gebirgsraum. Fischer, Stuttgart

    Google Scholar 

  • Ozenda P (1997) Le concept géobiologique d’orosystème. Rev Ecol Alpine Grenoble 4: 65–106

    Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (1999) Vascular plant distribution patterns at the low temperature limits of plant life — the alpine-nival ecotone of Mount Schrankogel (Tyrol, Austria). Phytocoenologia 29: 297–325

    ISI  Google Scholar 

  • Paulsen J, Weber UM, Körner C (2000) Tree growth near treeline: abrupt or gradual reduction with altitude? Arctic, Antarctic and Alpine Research 32(1): 14–20

    ISI  Google Scholar 

  • Pott R (1997) The Timberline in Upper Fimbertal. Report of DFG 2–3:18–21

    Google Scholar 

  • Pott R, Hüppe J, Remy D, Bauerochse A, Katenhusen O (1995) Paläoökologische Untersuchungen zu holozänen Waldgrenzschwankungen im Oberen Fimbertal. Phytocoenologia 25: 363–398

    Google Scholar 

  • Rathjens C (1982) Geographie des Hochgebirges: 1. Der Naturraum. Stuttgart

    Google Scholar 

  • Rauh W (1988) Tropische Hochgebirgspflanzen. Springer, Heidelberg

    Google Scholar 

  • Reisigl H, Keller R (1987) Alpenpflanzen im Lebensraum. Fischer, Stuttgart New York

    Google Scholar 

  • Ricolfi P (1985) Les Alpes Maritimes. Ed Serre, Nizza

    Google Scholar 

  • Sato K (1998) Vascular plants above the forest limit in the four major mountain ranges of Hokkaido, Japan. J Hokkaido-Gakuen-University 94/95: 207–246

    Google Scholar 

  • Scharfetter R (1929) Über die Entstehung der Alpenflora. Englers Bot Hefte 62: 524–544

    Google Scholar 

  • Schickhoff U, Walker MD, Walker DA (2002) Riparian willow communities on the Arctic slope of Alaska and their environmental relationships: A classification and ordination analysis. Phytocoenologia 32: 145–204

    Article  ISI  Google Scholar 

  • Schweinfurth U (1957) Die horizontale und vertikale Verbreitung der Vegetation im Himalaya. Bonner Geogr Abhandl 20, Bonn

    Google Scholar 

  • Shiyatov SG (2000) Climate dependent dynamics of the upper timberline and forest-tundra ecosystems during the last 1350 years in the polar Ural mountains, Russia. International Conference on Dendrochronology for the Third Millenium, 2–7 April 2000 Mendoza, Argentina, 241

    Google Scholar 

  • Stahr A, Hartmann T (1999) Landschaftsformen und Landschaftselemente im Hochgebirge. Springer, Heidelberg

    Google Scholar 

  • Steinger T, Körner C, Schmid B (1996) Long-term persistence in a changing climate: DNA analysis suggests very old ages of clones of alpine Carex curvula. Oecologia 105: 307–324

    Article  Google Scholar 

  • Succow M (1990) Die Mittelasiatischen Hochgebirge. In: Klotz G et al Hochgebirge der Erde. Urania, Leipzig Jena Berlin

    Google Scholar 

  • Szeicz JM, MacDonald GM (1995) Recent white spruce dynamics at the subarctic alpine treeline of north-western Canada. Journal of Ecology 83: 873–885

    ISI  Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline. Tree existence at high altitudes with special references to the European Alps. Ecological Studies 31, Springer, Berlin

    Google Scholar 

  • Troll C (1966) Ökologische Landschaftsforschung und vergleichende Hochgebirgsforschung. Erdkundliches Wissen 11: 95–126

    Google Scholar 

  • Trümpy R (1998) Die Entwicklung der Alpen: Eine kurze Übersicht. Zeitschrift der deutschen geologischen Gesellschaft 149(2): 165–182

    Google Scholar 

  • Väre H, Lampinen C, Humphries C, Williams P (2003) Vascular plant diversity in the European alpine areas. In: Nagy L, Grabherr G, Körner C, Thompson D (eds): European alpine diversity. Springer, Berlin, pp 133–147

    Google Scholar 

  • Wagner H (1985) Ost-und Westalpen, ein pflanzengeographischer Vergleich. Angewandte Pflanzensoziologie 18/19:265–278

    Google Scholar 

  • Walther G-R (2003) Plants in a warmer world. Perspectives in Plant Ecology, Evolution and Systematics 6(3): 169–185

    Article  ISI  Google Scholar 

  • Walther G, Pott R, Beißner S (2004) Climate change and high mountain vegetation belts. Springer, Heidelberg, Berlin

    Google Scholar 

  • Wardle P (1974) Alpine timberlines. In: Ives JD, Barry RG (eds) Arctic and Alpine Environments, Methuen, London, pp 371–402

    Google Scholar 

  • Wardle P, Coleman MC (1992) Evidence for rising upper limits of four native New Zealand forest trees. New Zealand Journal of Botany 30: 303–314

    ISI  Google Scholar 

  • Wearne LJ, Morgan JW (2001) Recent forest encroachment into subalpine grasslands near Mount Hotham, Victoria, Australia. Arctic, Antarctic, and Alpine Research 33: 369–377

    ISI  Google Scholar 

  • Weisberg PJ, Baker WL (1995) Spatial variation in tree seedling and krummholz growth in the forest-tundra ecotone of Rocky Mountain National Park, Colorado, USA. Arctic and Alpine Research 27(2): 116–129

    ISI  Google Scholar 

  • Whipple KX, Kirby E, Brocklehurst SH (1999) Geomorphic limits to climate-induced increases in topographic relief. Nature 401: 39–43

    Article  CAS  ISI  Google Scholar 

  • Willett SD (1999) Orogeny and orography: The effects of erosion on the structure of mountain belts. J Geophy Res 104: 28957–28981

    Article  Google Scholar 

  • Willett SD, Slingerland R, Hovius N (2001) Uplift, shortening, and steady state topography in active mountain belts. Am J Sci 301: 455–485

    Google Scholar 

  • Wissmann H von (1961) Stufen und Gürtel der Vegetation und des Klimas in Hochasien und seinen Randgebieten (Teil B). Erdkunde 15: 19–44

    Google Scholar 

  • Zeitler PK et al (2001) Erosion, Himalayan geodynamics, and the geomorphology of metamorphism. GSA Today 11:4–9

    Article  Google Scholar 

Ozeane und Moore

  • Ariztegui, Wildi W (2003) Lake Systems from the Ice Age to Industrial Time. Springer, Heidelberg

    Google Scholar 

  • Baba E, Kawarada H, Nishijima W, Okada M, Suito H (2003) Waves and Tidal Flat Ecosystems. Springer, Heidelberg

    Google Scholar 

  • Bailey RC, Norris RN, Reynoldson TB (2003) Bioassessment of freshwater ecosystems. Kluwer, Dordrecht

    Google Scholar 

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Coral reefs: coral’s adaptive response to climate change. Nature 430: 741–742

    Article  PubMed  CAS  ISI  Google Scholar 

  • Barbraud C, Weimerskirch H (2001) Emperor penguins and climate change. Nature 411: 183–186

    Article  PubMed  CAS  ISI  Google Scholar 

  • Barnabe G, Barnabe-Quet R (2000) Ecology and management of coastal waters. Springer, Heidelberg

    Google Scholar 

  • Beaugrand G, Reid PC, Ibañez F, Lindley JA, Edwards M (2002) Reorganisation of North Atlantic marine copepod biodiversity and climate. Science 296: 1692–1694

    Article  PubMed  CAS  ISI  Google Scholar 

  • Birkland C (1997) Life and death of coral reefs. Chapman & Hall, London

    Google Scholar 

  • Birks HH, Battarbee RW, Birks HJB (2000) The development of the aquatic ecosystem at Krakenes Lake, Western Norway, during the late-glacial and early holocene — a synthesis. J Palaeolimnol 23: 91–114

    Google Scholar 

  • Bowen J, Bowen M (2003) The Great Barrier Reef. History, science, heritage. Cambridge University Press, Cambridge

    Google Scholar 

  • Broll G, Merbach W, Pfeiffer EM (2002) Wetlands in Central Europe. Soil organisms, soil ecological processes and trace gas emissions. Springer, Heidelberg

    Google Scholar 

  • Bryant DA (2003) The beauty in small things revealed. PNAS 100(17): 9647–9649

    Article  PubMed  CAS  Google Scholar 

  • Campbell L, Vaulot D (1993) Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep-Sea Research 40: 2043–2060

    ISI  Google Scholar 

  • Carpenter SR, Kitchell JF (1993) The trophic cascade in lakes. Cambridge University Press, New York

    Google Scholar 

  • Chapman VJ (1974) Salt marshes and salt deserts of the world. 2nd edn, Cramer, Braunschweig

    Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326: 655–661

    Article  CAS  ISI  Google Scholar 

  • Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, West-Johnsrud L, Zettler ER (1992) Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol 157: 297–300

    Article  CAS  Google Scholar 

  • Clark R (2001) Marine pollution. Oxford Univ Press, Oxford

    Google Scholar 

  • Collin SP, Marshall NJ (2003) Sensory processing in aquatic environments. Springer, Heidelberg

    Google Scholar 

  • Cook RM, Sinclair A, Stefansson G (1997) Potential collapse of North Sea cod stocks. Nature 385: 521–522

    Article  CAS  ISI  Google Scholar 

  • Crawford RMM (1987) Plant life in aquatic and amphibious habitats. Blackwell, Oxford London

    Google Scholar 

  • Davenport R, Neuer S (1999) Satellitenfernerkundung von Phytoplanktonbiomasse und Primärproduktion in Weltozeanen. In: Bayerische Akademie der Wissenschaften (Hrsg) Fernerkundung und Ökosystem-Analyse. München, S 129–143

    Google Scholar 

  • DeLaune RD, Pezeshki SR (2001) Plant functions in wetland and aquatic ecosystems: Influence of intensity and capacity of soil reduction. The Scientific World 1: 636–649

    CAS  Google Scholar 

  • Dierssen K, Dierssen B (2001) Moore. Ulmer, Stuttgart

    Google Scholar 

  • Dittmann S (1999) The Wadden Sea Ecosystem. Springer, Heidelberg, New York

    Google Scholar 

  • Friis EM, Pederson KR, Crane PR (2001) Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature 410: 357–360

    Article  PubMed  CAS  ISI  Google Scholar 

  • Fukarek F, Hübel H, König P, Müller GK, Schuster R, Succow M (1995) Urania — Pflanzenreich — Vegetation. 1. Aufl, Urania, Leipzig

    Google Scholar 

  • Gätje C, Reise K (Hrsg) (1998) Ökosystem Wattenmeer. Springer, Heidelberg Berlin

    Google Scholar 

  • Giller P, Malmqvist B (1998) The biology of streams and rivers. Oxford Univ Press, Oxford

    Google Scholar 

  • Goreau TF, Goreau NT, Goreau TJ (1979) Corals and coral reefs. Scientific American 241: 124–135

    Article  ISI  Google Scholar 

  • Grigg RW, Hey R (1992) Palaeooceanography of the tropical Eastern Pacific Ocean. Science 255: 172–178

    ISI  PubMed  Google Scholar 

  • Hammer UT (1986) Saline lake ecosystems of the world. Junk, Dordrecht

    Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwat Res 50: 839–866

    Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström N, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate Change, Human Impacts, and the Resilience of Coral Reefs. Science 301: 929–933

    Article  PubMed  CAS  ISI  Google Scholar 

  • Hutchinson GE (1944) Limnological studies in Connecticut. VII. A critical examination of the supposed relationship between phytoplankton periodicity and chemical changes in lake waters. Ecology 25: 3–26

    CAS  ISI  Google Scholar 

  • Illies J (1961) Versuch einer allgemeinen biozönotischen Gliederung der Fließgewässer. Int Rev Ges Hydrobiol 46: 205–213

    Google Scholar 

  • Keeley JE (1998) CAM photosynthesis in submerged aquatic plants. Bot Rev 64: 121–175

    Google Scholar 

  • Koppitz H, Kühl H, Hesse K, Kohl J-G (1997) Some aspects of the importance of genetic diversity in Phragmites australis (Cav.) Trin. ex Steudel for the development of reed stands. Bot Acta 110: 217–223

    Google Scholar 

  • Lampert W, Sommer U (1999) Limnoökologie. Thieme, Stuttgart

    Google Scholar 

  • La Roche J, van der Staay GW, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AW, Green BR (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b lightharvesting proteins. Proceedings of the National Academy of Sciences of the United States of America 93:15244–8

    PubMed  Google Scholar 

  • Lang G (1981) Die submersen Makrophyten des Bodensees — 1978 im Vergleich mit 1967. Ber Int Gewässerschutzkommiss Bodensee 26: 1–64

    Google Scholar 

  • Leeflang L, During HJ, Werger MJA (1998) The role of petioles in light acquisition by Hydrocotyle vulgaris L. in a vertical light gradient. Oecologia 117: 235–238

    Article  ISI  Google Scholar 

  • Lieth H, Mochtchenko M (2004) Cash crop halophytes recent studies. Tasks of Vegetation Science 38, Kluwer, Dordrecht

    Google Scholar 

  • Livingstone DA (1963) Chemical composition of rivers and lakes. US Geological Survey, Prof. Pap 440G, Washington/DC

    Google Scholar 

  • Looman J (1986) The vegetation of the Canadian Prairie Provinces. III. Aquatic and semi-aquatic vegetation. Part 3. Aquatic plant communities. Phytocoenol 14(1): 19–54

    Google Scholar 

  • Loreau M, Inchausti P, Naeem S (2002) Biodiversity and ecosystem functioning, synthesis and perspectives. Oxford University Press, Oxford

    Google Scholar 

  • Martens K (2003) Aquatic biodiversity. Developments in Hydrobiology 171, Kluwer, Dordrecht

    Google Scholar 

  • Matthews RO (1998) Die Großen Naturwunder — Ein Atlas der Naturphänomene unserer Erde. 8. Aufl, Frederking & Thaler, München

    Google Scholar 

  • McClanahan T, Sheppard C, Okura D (2000) Coral reefs of the Indian Ocean. Oxford University Press

    Google Scholar 

  • McLusky DS, Elliott M (2004) The estuarine ecosystem. 3rd edn, Oxford Univ Press, Oxford

    Google Scholar 

  • Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393: 464–467

    PubMed  CAS  ISI  Google Scholar 

  • Naiman RJ, Bilby RE (1998) River ecology and management. Springer, Heidelberg

    Google Scholar 

  • Oberdorfer JA, Buddemeier RW (1986) Coralreef hydrology: field studies of water movement within a barrier reef. Coral Reefs 5: 5–12

    Article  Google Scholar 

  • Ott J (1996) Meereskunde. Ulmer, Stuttgart

    Google Scholar 

  • Overbeck F (1975) Botanisch-geologische Moorkunde unter besonderer Berücksichtigung der Moore Nordwestdeutschlands als Quellen zur Vegetations-, Klima-und Siedlungsgeschichte. Wachholtz, Neumünster

    Google Scholar 

  • Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA, Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424: 1037–1042

    Article  PubMed  CAS  ISI  Google Scholar 

  • Pandolfi JM (1992) Successive isolation rather than evolutionary centres for the origination of Indo-Pacific reef corals. Journal of Biogeography 19: 593–609

    ISI  Google Scholar 

  • Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63: 106–127

    PubMed  CAS  Google Scholar 

  • Petersen J (2000) Die Dünentalvegetation der Wattenmeer-Inseln in der südlichen Nordsee. Husum-Verlagsgruppe, Husum

    Google Scholar 

  • Petersen J (2001) Die Vegetation der Wattenmeer-Inseln im raum-zeitlichen Wandel — ein Beispiel für den Einsatz moderner vegetationsanalytischer Methoden. Ber d Reinh-Tüxen-Ges 13: 139–155

    Google Scholar 

  • Petersen J, Pott R, Janiesch P, Wolff J (2003) Umweltverträgliche Grundwasserbewirtschaftung in hydrologisch und ökologisch sensiblen Bereichen der Nordseeküste. Husum Druck, Husum

    Google Scholar 

  • Pott R (1995) Farbatlas Nordseeküste und Nordseeinseln; Ausgewähte Beispiele aus der südlichen Nordsee in geobotanischer Sicht. Ulmer, Stuttgart

    Google Scholar 

  • Pott R (Hrsg) (2000) Ökosystemanalyse des Naturschutzgebietes „Heiliges Meer“ (Kreis Steinfurt). Abh Westf Mus Natkd 62, 397 S, Münster

    Google Scholar 

  • Pott R (2003) Die Nordsee — eine Natur-und Kulturgeschichte. Beck, München

    Google Scholar 

  • Pott R, Remy D (2000) Ökosysteme Mitteleuropas-Die Gewässer des Binnenlandes. Ulmer, Stuttgart

    Google Scholar 

  • Russo R (1994) Hawaiian Reefs. A Natural History Guide. Wavecrest Publications, San Leandro/CA

    Google Scholar 

  • Sale PF (1977): Maintenance of high diversity of coral reef fish communities. Am Nat 111: 337–359

    Article  Google Scholar 

  • Schernewski G, Schiewer U (2002) Baltic Coastal Ecosystems. Springer, Heidelberg

    Google Scholar 

  • Seeliger U, Kjerfve B (2001) Coastal marine ecosystems of Latin America. Springer, Heidelberg

    Google Scholar 

  • Seibold E (1987) Die Ozeane im zeitlichen Wandel. Nova Acta Leopoldina NT 53, Nr 244: 133–157, Halle

    Google Scholar 

  • Shapleigh JP (2000) The Denitrifying Prokaryotes. In: The Prokaryotes, Springer, New York

    Google Scholar 

  • Sheppard C (2002) Coral Reefs. — Ecology, threats & conservation. Worldwide Library, Voyageur Press, Vancouver, BC

    Google Scholar 

  • Spalding MD, Ravilions C, Green EP (2001) World Atlas of Coral Reefs. University of California Press, Stanford

    Google Scholar 

  • Spindler M (1994) Notes on the biology of sea ice in the Arctic and Antarctic. Polar Biology 14: 319–324

    Article  ISI  Google Scholar 

  • Spindler M, Dieckmann GS (1991) Das Meereis als Lebensraum. In: Hempel G (Hrsg) Biologie der Meere. Spektrum, Heidelberg, S 102–111

    Google Scholar 

  • Stanley SM (2001) Historische Geologie. 2. deutsche Aufl, Schweizer V (Hrsg), Spektrum, Heidelberg

    Google Scholar 

  • Stenseth N, Ottersen G, Hurrell JW, Belgrano A (2004) Marine ecosystem and climate variation. Oxford Univ Press, Oxford

    Google Scholar 

  • Succow M, Joosten H (Hrsg) (2001) Landschaftsökologische Moorkunde. 2. Aufl, Schweizerbart, Stuttgart

    Google Scholar 

  • Thienemann A (1955) Die Binnengewässer in Natur und Kultur. Springer, Berlin

    Google Scholar 

  • Thienemann A (1956) Leben und Umwelt — vom Gesamthaushalt der Natur. Rowohlt, Hamburg

    Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37: 130–137

    Article  Google Scholar 

  • Ward JV, Uehlinger U (2003) Ecology of a glacial flood plain. Aquatic Ecology 1, Kluwer, Dordrecht

    Google Scholar 

  • Wescoat JL, White GF (2003) Water for life — water management and environmental policy. Cambridge University Press, Cambridge

    Google Scholar 

  • Wetzel RG (2001) Limnology. Lake and river ecosystems. 3rd edn, Academic Press, San Diego

    Google Scholar 

  • Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MYM, Jørgensen BB (2004) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428: 66–70

    Article  PubMed  CAS  ISI  Google Scholar 

  • Wilkinson CR (1987) Microbial ecology on a coral reef. Search 18: 31–33

    ISI  Google Scholar 

  • Wulff FV, Rahm LA, Larsson P (2001) A systems analysis of the Baltic Sea. Springer, Heidelberg

    Google Scholar 

  • Zenkewitch L (1963) Biology of the seas of the USSR. Allen & Unwin, London

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Azonale und extrazonale Lebensräume - Vom höchsten Punkt zur tiefsten Stelle. In: Allgemeine Geobotanik. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27527-4_17

Download citation

Publish with us

Policies and ethics