Skip to main content

Bioerosion patterns in a deep-water Lophelia pertusa (Scleractinia) thicket (Propeller Mound, northern Porcupine Seabight)

  • Chapter
Cold-Water Corals and Ecosystems

Part of the book series: Erlangen Earth Conference Series ((ERLANGEN))

Abstract

This study focuses on bioerosion of an aphotic deep-water coral mound, the Propeller Mound, in the northern Porcupine Seabight. The predominant framework builder is the cosmopolitan cold-water coral Lophelia pertusa. We demonstrate bioerosion patterns within the skeleton of L. pertusa using a new embedding method under vacuum conditions with subsequent scanning electron microscope analysis. Following this method, 23 ichnospecies are documented and related to heterotrophic organism groups such as Bacteria (1), Fungi (12), Bryozoa (1), Foraminifera (3), and Porifera (6). Predominant endolithic sponges in the framework of L. pertusa are Alectona millari and Spiroxya heteroclita. Owing to its characteristic growth and surface ornamentation, trace casts of Spiroxya heteroclita are correlated to the well-known trace fossil Entobia laquea.

Investigations of thin sections of post-mortem skeletons show a clearly pronounced endolithic tiering of three penetration depths. The analysed samples are divided into three macroscopic preservational stages differing in post-mortem age, and exposure of the framework. Bioerosion affects bare parts of the coral skeleton. Bioeroders preferably settle on one side of an upright growing colony. A succession usually starts with the infestation by bacteria and fungi. Contact zones of epiliths are preferred areas for penetration by endoliths. Sponges and foraminifers appear 10 cm below the zone of living polyps, followed by boring bryozoans 15 cm below. However, in one case the sponge Spiroxya heteroclita is documented in the skeleton of living polyps. Frameworks exposed to water host 19 ichnospecies, thus forming the most diverse ichnocoenosis, whereas nine ichnospecies are documented in coral specimens buried by sediment. Mapping of epi- and endoliths in living and freshly necrotic colonies represents a useful tool for monitoring environmental conditions and define ecological “health” of deep-water corals in a rapid large-scale assessment of the state of coral reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allouc J, Hilly J, Ghanbaja J, Villemin G (1999) Phénomèmes biosédimentaires et genèse des croutes et enduits polymétalliques. L’exemple des dépots hydrogénétiques de la marge Oest Africaine et de la Méditerranée. Geobios 32: 769–790

    Article  Google Scholar 

  • Anderson DT (1998) Invertebrate Zoology. Oxford Univ Press, Australia

    Google Scholar 

  • Bathurst RGC (1966) Boring algae, micrite envelopes and lithification of molluscan biosparites. J Geol 5: 15–32

    Google Scholar 

  • Boerboom CM, Smith JE, Risk, MJ (1998) Bioerosion and micritization in the deep sea coral Desmophyllum cristagalli. Hist Biol 13: 53–60

    Article  Google Scholar 

  • Bromley RG (1970) Borings as trace fossils and Entobia cretacea Portlock, as an example. In: Crémes TP, Harper JC (eds) Trace fossils. Geol J Spec Issue 3: 49–90

    Google Scholar 

  • Bromley RG (2004) A stratigraphy of bioerosion. In: McIlroy D (ed) The Application of Ichnology in Palaeoenvironmental and Stratigraphic Analysis. Spec Publ Geol Soc London 228: 455–481

    Google Scholar 

  • Bromley RG (2005) Preliminary study of bioerosion in the deep-water coral Lophelia, Pleistocene, Rhodes, Greece. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 895–914

    Google Scholar 

  • Bromley RG, Asgaard U (1993a) Endolithic community replacement on a Pliocene rocky coast. Ichnos 2: 93–116

    Google Scholar 

  • Bromley RG, Asgaard U (1993b) Two bioerosional ichnofacies produced by early and late burial associated with sea-level change. Geol Rdsch 82: 276–280

    Article  Google Scholar 

  • Bromley RG, D’Alessandro A (1984) The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of Southern Italy. Riv Ital Paleont Stratigr 90: 227–296

    Google Scholar 

  • Budd DA, Perkins RD (1980) Bathymetric zonation and paleoecological significance of microborings in Puerto Rican shelf and slope sediments. J Sediment Petrol 50: 881–904

    Google Scholar 

  • Calcinai B, Arillo A, Cerrano C, Bavestrello G (2003) Taxonomy-related differences in the excavating micro-patterns of boring sponges. J Mar Biol Ass UK 83: 37–39

    Google Scholar 

  • Cedhagen T (1994) Taxonomy and biology of Hyrrokkin sarcophaga gen. et sp. n., a parasitic foraminiferan (Rosalinidae). Sarsia 79: 65–82

    Google Scholar 

  • Cherchi A, Schroeder R (1991) Perforations branchues dues à des Foraminifères cryptobiontiques dans des coquilles actuelles et fossiles. CR Acad Sci Paris, Ser II, 312: 111–115

    Google Scholar 

  • De Mol B, Rensbergen P van, Pillen S, Van Herreweghe K, Van Rooji D, McDonnell A, Huvenne V, Ivanov M, Swennen R, Henriet JP (2002) Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Mar Geol 188: 193–231

    Google Scholar 

  • Farrow GE, Durant GP (1985) Carbonate-basaltic sediments from Cobb Seamount, northeast Pacific: zonation, bioerosion and petrology. Mar Geol 65: 73–102

    Article  Google Scholar 

  • Flügel E (1982) Microfacies Analysis of Limestones. Springer, Berlin Heidelberg

    Google Scholar 

  • Freiwald A (1998) Geobiology of Lophelia pertusa (Scleractinia) reefs in the North Atlantic. Habilitation thesis, Bremen Univ

    Google Scholar 

  • Freiwald A, Schönfeld J (1996) Substrate pitting and boring pattern of Hyrrokkin sarcophaga Cedhagen, 1994 (Foraminifera) in a modern deep-water coral reef mound. Mar Micropaleont 28: 199–207

    Google Scholar 

  • Freiwald A, Wilson JB (1998) Taphonomy of modern deep, cold-temperate water coral reefs. Hist Biol 13: 37–52

    Google Scholar 

  • Freiwald A, Reitner J, Krutschinna J (1997) Microbial alteration of the deep-water coral Lophelia pertusa: early postmortem processes. Facies 36: 223–226

    Google Scholar 

  • Fritsche W (1999) Mikrobiologie. Spektrum, Heidelberg

    Google Scholar 

  • Ghiorse WC, Ehrlich HL (1992) Microbial biomineralization of Iron and Manganese. Catena, Suppl 21: 75–99

    Google Scholar 

  • Glaub I (1994) Mikrobohrspuren in ausgewählten Ablagerungsräumen des europäischen Jura und der Unterkreide (Klassifikation und Palökologie). Cour Forschinst Senckenb 174: 1–324

    Google Scholar 

  • Golubic S (1983) Kunstharzausgüsse fossiler Mikroben-Bohrgänge. Präparator 29: 197–200

    Google Scholar 

  • Golubic S, Schneider J (1979) Carbonate dissolution. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam, pp 107–129

    Google Scholar 

  • Golubic S, Brent G, Le Campion T (1970) Scanning electron microscopy of endolithic algae and fungi using a multipurpose casting-embedding technique. Lethaia 3: 203–209

    Google Scholar 

  • Günther A (1990) Distribution and bathymetric zonation of shell-boring endoliths in recent reef and shelf environments: Cozumel, Yucatan (Mexico). Facies 22: 233–262

    Google Scholar 

  • Gunatilaka A (1976) Thallophyte boring and micritization within skeletal sands from Connemara, Western Ireland. J Sediment Petrol 46: 548–554

    Google Scholar 

  • Hook JE, Golubic S (1988) Mussel periostracum from deep-sea redox communities as a microbial habitat: the scalloping periostracum borer. PSZNI: Mar Ecol 9: 347–364

    Google Scholar 

  • Hook JE, Golubic S (1990) Mussel periostracum from deep-sea redox communities as a microbial habitat: 2. The pit borers. PSZNI: Mar Ecol 11: 239–254

    Google Scholar 

  • Hook JE, Golubic S (1992) Mussel periostracum from deep-sea redox communities as a microhabitat: 3. Secondary inhabitants. PSZNI: Mar Ecol 13: 119–131

    Article  Google Scholar 

  • Hook JE, Golubic S (1993) Microbial shell destruction in deep-sea mussels, Florida Escarpment. PSZNI: Mar Ecol 14: 81–89

    Google Scholar 

  • Hook JE, Golubic S, Milliman JD (1984) Micritic cement in microborings is not necessarily a shallow-water indicator. J Sediment Petrol 54: 425–431

    Google Scholar 

  • Hooper JNA, Soest RWM van (2002) Order Hadromerida Topsent, 1894. In: Hooper JNA, Soest RWM van (eds) Systema Porifera: a guide to the classification of sponges. Kluwer Acad/Plenum Publ, New York, pp 169–290

    Google Scholar 

  • Konhauser KO (1998) Diversity of bacterial iron mineralization. Earth Sci Rev 43: 91–121

    Article  Google Scholar 

  • López Correa M, Freiwald A, Hall-Spencer J, Taviani M (2005) Distribution and habitats of Acesta excavata (Bivalvia: Limidae), with new data on its shell ultrastructure. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 173–205

    Google Scholar 

  • Macintyre IG (1984) Preburial and shallow-subsurface alteration of modern scleractinian corals. Palaeont Amer 54: 229–243

    Google Scholar 

  • Madigan T, Martinko JM, Parker J (2000) Brock-Mikrobiologie. Spektrum, Berlin, 1175 pp

    Google Scholar 

  • Mullins HT, Newton CR, Heath K, Vanburen HM (1981) Modern deepwater coral mounds north of Little Bahama Bank: criteria for recognition of deepwater coral bioherms in the rock record. J Sediment Petrol 51: 999–1013

    Google Scholar 

  • Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol Oceanogr 54: 92–108

    Google Scholar 

  • Newton CR, Mullins HT, Gardulski AF, Hine AC, Dix GR (1987) Coral mounds on the West Florida slope: unanswered questions regarding the development of deep-water banks. Palaios 2: 359–367

    Google Scholar 

  • Nielsen JK, Maiboe J (2000) Epofix and vacuum: an easy method to make casts of hard substrates. Palaeont Electron 3: 1–10

    Google Scholar 

  • Perry CT, MacDonald IA (2002) Impacts of light penetration on the bathymetry of reef microboring communities: implications for the development of microendolithic trace assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 186: 101–113

    Article  Google Scholar 

  • Plewes CR, Palmer TJ, Haynes JR (1993) A boring foraminiferan from the Upper Jurassic of England and Northern France. J Micropalaeont 12: 83–89

    Google Scholar 

  • Pohowsky RA (1978) The boring ctenostomate Bryozoa: taxonomy and paleobiology based on cavities in calcareous substrata. Bull Amer Paleont 73: 1–192

    Google Scholar 

  • Radtke G (1991) Die mikroendolithischen Spurenfossilien im Alt-Tertiär West-Europas und ihre palökologische Bedeutung. Cour Forschinst Senckenb 138: 1–185

    Google Scholar 

  • Sand W (1995) Mineralische Werkstoffe. In: Brill H (ed) Mikrobielle Materialzerstörung und Materialschutz. Fischer, Jena, pp 78–110

    Google Scholar 

  • Schmidt H (1992) Mikrobohrspuren ausgewählter Faziesbereiche der tethyalen und germanischen Trias (Beschreibung, Vergleich und bathymetrische Interpretation). Frankfurter Geowiss Arb A 12: 228 pp

    Google Scholar 

  • Schneider J, Torunski H (1983) Biokarst on limestone coasts, morphogenesis and sediment production. Mar Ecol 4: 45–63

    Google Scholar 

  • Scoffin TP (1981) Aspects of the preservation of deep and shallow water reefs. Proc 4th Int Coral Reef Symp, Manila 1: 499–501

    Google Scholar 

  • Scoffin TP, Alexandersson ET, Bowes GE, Clokie JJ, Farrow GE, Milliman JD (1980) Recent, temperate, sub-photic, carbonate sedimentation: Rockall Bank, northeast Atlantic. J Sediment Petrol 50: 331–356

    Google Scholar 

  • Swinchatt JP (1969) Algal boring: a possible depth indicator in carbonate rocks and sediments. Geol Soc Amer Bull 80: 1391–1396

    Google Scholar 

  • Soest RWM van, Hooper JNA (2002) Order Haplosclerida Topsent, 1928. In: Hooper JNA, Soest RWM van (eds) Systema Porifera: a guide to the classification of sponges. Kluwer Acad/Plenum Publ, New York, pp 831–1019

    Google Scholar 

  • Soest RWM van, Picton B, Morrow C (2000) Sponges of the North East Atlantic. World Biodiversity Database, Biodiversity Center of ETI, CD-ROM Series. Springer, Berlin Heidelberg

    Google Scholar 

  • Taylor PD, Wilson MA, Bromley RG (1999) A new ichnogenus for etchings made by cheilostome bryozoans into calcareous substrates. Palaeontology 42: 595–604

    Article  Google Scholar 

  • Vacelet J (1999) Planctonic armoured propagules of the excavating sponge Alectona (Porifera: Demospongiae) are larvae: evidence from Alectona wallichii and A. mesatlantica sp. nov. Mem Queensl Mus 44: 627–642

    Google Scholar 

  • Vogel K, Glaub I (2004) 450 Millionen Jahre Beständigkeit in der Evolution endolithischer Mikroorganismen? Franz Steiner, Stuttgart, 42 pp

    Google Scholar 

  • Wilson MA (2003) Marine Bioerosion Bibliography. http://www.wooster.edu/geology/Bioerosion/BioerosionBiblio.doc

    Google Scholar 

  • Wisshak M, Freiwald A, Gektidis M, Lundälv T (2005) The physical niche of the bathyal Lophelia pertusa in a non-bathyal setting: environmental controls and palaeoecological implications. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 979–1001

    Google Scholar 

  • Wood R (1995) The changing biology of reef-building. Palaios 10: 517–529

    Google Scholar 

  • Zebrowski G (1936) New genera of Cladochytriaceae. Ann Missouri Bot Garden 23: 553–564

    Google Scholar 

  • Zeff ML, Perkins RD (1979) Microbial alteration of Bahamian deep-sea carbonates. Sedimentology 26: 175–201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beuck, L., Freiwald, A. (2005). Bioerosion patterns in a deep-water Lophelia pertusa (Scleractinia) thicket (Propeller Mound, northern Porcupine Seabight). In: Freiwald, A., Roberts, J.M. (eds) Cold-Water Corals and Ecosystems. Erlangen Earth Conference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27673-4_47

Download citation

Publish with us

Policies and ethics