Skip to main content

Elastic Continuum Models of Phonons in Carbon Nanotubes

  • Chapter
Applied Physics of Carbon Nanotubes

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In this chapter, elastic continuum models are used to describe phonons in carbon nanotubes and vibrational modes in biological structures. Based on elastic continuum theory, acoustic vibrational modes are modeled for both zigzag and armchair nanotubes of finite length using a variational solution of Donnell's equation. The acoustic phonon modes in these calculations are determined for both even and odd modes of the acoustic displacement. The dispersion relations vary with the length of the tube. The displacement field of the nanotube is used to calculate the deformation potential interaction Hamiltonian. In addition, the optical vibrational modes are derived for finite length nanotubes in the elastic continuum approximation. A quantum mechanical normalization prescription is applied to facilitate the determination of the optical phonon modes. The dispersion relation is calculated based on the continuum approach and the quantum normalized amplitude is used to calculate the optical deformation potential. These fully three-dimensional elastic continuum models are compared with other approaches to modeling phonons in carbon nanotubes such as the popular zone-folding technique. In a related underlying topic, the applicability of continuum models for the analysis of nanoscale structures is demonstrated for the case fullerenes. It is shown that the b2 elongation mode of C60 may be described within the continuum approximation. Indeed, for these fullerene structures, the frequencies of selected vibrational modes are predicted to within a few percent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.R. Falvo et al: Nature (London) 389, 582 (1997)

    Article  PubMed  Google Scholar 

  2. Z. Yao, H.W.C. Postma, L. Balents, and C. Dekker: Nature (London) 402, 273 (1999)

    Article  Google Scholar 

  3. Z.K. Tang et al: Science 292, 2462 (2001)

    Article  PubMed  Google Scholar 

  4. T.W. Odom, J.L. Huang, P. Kim, and C.M. Leiber: Nature (London) 391, 62 (1998)

    Article  Google Scholar 

  5. Jing Guo, Sebastian Goasguen, Mark Lundstrom, and Supriyo Datta: Appl. Phys. Lett. 81, 1486 (2002)

    Article  Google Scholar 

  6. Jing Guo, Mark Lundstrom, and Supriyo Datta: Appl. Phys. Lett. 80, 3192 (2002)

    Article  Google Scholar 

  7. J.A. Misewich, R. Martel, Ph. Avouris, J.C. Tsang, S. Heinze, J, Tersoff: Science 300,783 (2003)

    Article  PubMed  Google Scholar 

  8. R.A. Jishi, L. Venkataraman, M.S. Dresselhaus and G. Dresselhaus: Chem. Phys. Lett. 209,77 (1993)

    Article  Google Scholar 

  9. J. Yu, R.K. Kalia and P. Vashista: J. Chem. Phys. 103, 6697 (1995)

    Article  Google Scholar 

  10. M. Menon, E. Ritcher and K.R. Subbaswamy: J. Chem. Phys. 104, 5875 (1996)

    Article  Google Scholar 

  11. D.H Robertson, D.W. Brenner and J.W. Mintmire: Phys Rev. B. 45, 12592 (1992)

    Article  Google Scholar 

  12. J.P. Lu, Phys. Rev. Lett. 79: 1297 (1997)

    Article  Google Scholar 

  13. Daniel Sanchez-Portal, Emilio Artacho, Jose M. Soler, Angel Rubio, and Pablo Oedejon: Phys. Rev. B 59, 12678 (1999)

    Article  Google Scholar 

  14. C. Trallero-Giner, F. Garcya-Moliner, V. Velasco, and M. Cardona: Phys. Rev. B 45, 11944 (1992)

    Article  Google Scholar 

  15. T.D. Krauss and F.W. Wise: Phys. Rev. Lett. 79, 5102 (1997)

    Article  Google Scholar 

  16. J.H. Hodak, A. Henglien, and G.V. Hartland: J. Chem. Phys. 111, 8613 (1999)

    Article  Google Scholar 

  17. M.A. Stroscio and M. Dutta: Phys. Rev. B 60, 7722 (1999); M.A. Stroscio and Mitra Dutta: Phonons in Nanostructures (Cambridge University Press, Cambridge 2001)

    Article  Google Scholar 

  18. L.T. Chadderton: J. Phys. Chem. Solids 54, 1027 (1993)

    Article  Google Scholar 

  19. X. Xiaoyu, L. Ji-Xing, and O.Y. Zhong-Can: Mod. Phys. Lett. 9, 1649 (1995)

    Article  Google Scholar 

  20. H. Kraus: Thin Elastic Shells (Wiley, New York 1967)

    Google Scholar 

  21. Daniel Kahn, K.W. Kim and Michael A. Stroscio: Journal of Appl. Phys. 89, 5107 (2001)

    Article  Google Scholar 

  22. Hidekatsu Suzurra and Tsuneya Ando: Phys. Rev. B 65, 235412 (2002)

    Article  Google Scholar 

  23. Amit Raichura, Mitra Dutta and Michael A. Stroscio: Journal of Appl. Phys. 94, 4060 (2003)

    Article  Google Scholar 

  24. Philip G. Collins, M. Hersam, M. Arnold, R. Martel, and Ph. Avouris: Phys. Rev. Lett. 86, 3128 (2001)

    Article  PubMed  Google Scholar 

  25. M.A. Stroscio, Mitra Dutta, Daniel Kahn, and Ki Wook Kim: Superlatt. Microstruct. 29, 405–409 (2001)

    Article  Google Scholar 

  26. Max Born and Kun Huang: Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford 1954)

    Google Scholar 

  27. Karl Hess: Advanced Theory of Semiconductor Devices (Prentice Hall, NJ 1988)

    Google Scholar 

  28. Zhen Yao, Charles L. Kane, and Cees Dekker: Phys. Rev. Lett. 84, 2941 (2000)

    Article  PubMed  Google Scholar 

  29. Daniel Kahn, K.W. Kim, and Michael A. Stroscio: Journal of Appl. Phys. 89, 5107 (2001)

    Article  Google Scholar 

  30. W.E. Baker: J. Acoust. Soc. Am. 33, 1749 (1961)

    Article  Google Scholar 

  31. L.T. Chadderton: J. Phys. Chem. Solids 54, 1027 (1993)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raichura, A., Dutta, M., Stroscio, M. (2005). Elastic Continuum Models of Phonons in Carbon Nanotubes. In: Rotkin, S.V., Subramoney, S. (eds) Applied Physics of Carbon Nanotubes. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28075-8_3

Download citation

Publish with us

Policies and ethics