Skip to main content

Complex Dynamics in Macroeconomics: A Novel Approach

  • Chapter
New Trends in Macroeconomics

Summary

In this work we employ the Recurrence Quantification Analysis (RQA) framework, effective in discovering evidence of non-linear determinism and complex dynamics in short, noisy and irregular signals. We apply RQA to a set of US macroeconomic time series and simulated sequences in order to provide a classification based on topological aspects of their dynamics. Through RQA we can in general obtain useful information on the quality and complexity of the structure of the dynamics in an economy, as this is embedded in its macroeconomic time series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarbanel HDI (1995) Analysis of observed ohaotic data. New York: Springer-Verlag

    Google Scholar 

  2. Antoniou A, Vorlow CE (2000) Recurrence plots and financial time series analysis. Neural Network World 10: 131–146

    Google Scholar 

  3. Antoniou A, Volrow CE (2004) Recurrence quantification analysis of wavelet pre-filtered index returns. Physica A: Statistical Mechanics and its Applications 334: 257–262

    Article  ADS  Google Scholar 

  4. Antoniou A, Volrow CE (2005) Price clustering and discreteness: Is there chaos behind the noise? Physica A: Statistical Mechanics and its Applications 348: 389–403

    Article  ADS  Google Scholar 

  5. Atay FM, Altıntaş Y (1999) Recovering smooth dynamics from time series with the aid of recurrence plots. Physical Review E 59: 6593–6598

    Article  ADS  CAS  Google Scholar 

  6. Balakrishnan V, Nicolis G, Nicolis C (2000) Recurrence time statistics in deterministic and stochastic dynamical systems in continuous time: A comparison. Physical Review E 61: 2490–2499

    Article  ADS  CAS  MathSciNet  Google Scholar 

  7. Barnett WA, Chen P (1988) The aggregation-theoretic monetary aggregates are chaotic and have strange attractors: An econometric application of mathematical chaos. In Barnett WA, Berndt ER, White H (eds), Dynamic econometric modeling: Proceedings of the third international symposium in economic theory and econometrics, Cambridge University Press

    Google Scholar 

  8. Barnett W, Hinich H (1993) Has chaos been discovered with economic data? In Ping C, Richard D (eds) Evolutionary dynamics and nonlinear economics, Oxford University Press

    Google Scholar 

  9. Baumol W, Benhabib J (1989) Chaos: Significance, mechanism, and economic applications. Journal of Economic Prespectives 3: 77–105

    Google Scholar 

  10. Belaire-Franch J, Contreras D, Tordera-Lledo L (2002) Assessing nonlinear structures in real exchange rates using recurrence plot strategies. Physica D: Nonlinear Phenomena 171: 249–264

    Article  ADS  Google Scholar 

  11. Boldrin M, Woodford M (1990) Equillibrium models displaying endogenous fluctuations and chaos: A survey. Journal of Monetary Economics 25: 189–222

    Article  Google Scholar 

  12. Bordignon S, Lisi F (2001) Predictive accuracy for chaotic economic models. Econonomics Letters 70: 51–58

    Article  Google Scholar 

  13. Brock W (1990) Chaos and complexity in economics and financial science. In von Furtenberg G (ed) Acting under uncertainty: Multidisciplinary conceptions, Kluwer

    Google Scholar 

  14. Brock WA (1991) Causality, chaos, explanation and prediction in economics and finance. In Casti JL and Karlqvist A (eds) Beyond belief: Randomness, prediction and explanation in science, CRC Press

    Google Scholar 

  15. Brock WA, Dechert WD (1991) Non-linear dynamical systems: Instability and chaos in economics. In Hildenbrand W and Sonnenschein H (eds) Handbook of mathematical economics, Amsterdam: North-Holland

    Google Scholar 

  16. Brock WA, Hsieh DA, Le Baron B (1991) Nonlinear dynamics, chaos, and instability: Statistical theory and economic evidence. MIT Press

    Google Scholar 

  17. Brock WA, Sayers CL (1988) Is the business cycle characterized by deterministic chaos? Journal of Monetary Economics 22: 71–90

    Article  Google Scholar 

  18. Bullard JB, Butler A (1993) Nonlinearity and chaos in economic models: Implications for policy decisions. Economic Journal 103: 849–867

    Article  Google Scholar 

  19. Butler A (1990) A methodological approach to chaos: Are economists missing the point? Federal Reserve Bank of St. Louis Review 72: 36–48

    Google Scholar 

  20. Casdagli MC (1997) Recurrence plots revisited. Physica D: Nonlinear Phenomena 108: 12–44

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Eckmann JP, Oliffson KS, Ruelle D (1987) Recurrence plots of dynamical systems. Europhysics Letters 4: 973–977

    Article  ADS  Google Scholar 

  22. Ferreira FF, Francisco G, Machado BS, Muruganandam P (2003) Time series analysis for minority game simulations of financial markets. Physica A: Statistical Mechanics and its Applications 321: 619–632

    Article  ADS  MathSciNet  Google Scholar 

  23. Frank MZ, Gencay R, Stengos T (1988) International chaos? European Economic Review 32: 1569–1584

    Article  Google Scholar 

  24. Frank MZ, Stengos T (1988) Some evidence concerning macroeconomic chaos. Journal of Monetary Economics 22: 423–438

    Article  Google Scholar 

  25. Frank MZ, Stengos T (1988) Chaotic dynamics in economic time-series. Journal of Economic Surveys 2: 103–133

    Article  Google Scholar 

  26. Gao JB, Cai HQ (2000) On the structures and quantification of recurrence plots. Physics Letters A 270: 75–87

    Article  ADS  CAS  Google Scholar 

  27. Gilmore CG (2001) An examination of nonlinear dependence in exchange rates, using recent methods from chaos theory. Global Finance Journal 12: 139–151

    Article  MathSciNet  Google Scholar 

  28. Grandmont J-M (1985) Endoggenous competitive business cycles. Econometrica 53: 995–1045

    Article  MATH  MathSciNet  Google Scholar 

  29. Grandmont J-M (1987) Nonlinear economic dynamics. Academic Press

    Google Scholar 

  30. Grandmont J-M (1987) Stabilizing competitive business cycles. In Grandmont J-M (ed) Nonlinear economic dynamics, Academic Press

    Google Scholar 

  31. Granger CWJ (1994) Is chaotic economic theory relevant for economics? Journal of International and Comparative Economics 3: 139–145

    Google Scholar 

  32. Hommes CH (2001) Fianncail markets as non-linear adaptive evolutionary systems. Quantitative Finance 1: 149–167

    Article  MathSciNet  Google Scholar 

  33. Holyst J, Zebrowska M, Urbanowicz K (2001) Observations of deterministic chaos in financial time series by recurrence plots, can one control chaotic economy? The European Physical Journal B 20: 531–535

    Article  ADS  MathSciNet  Google Scholar 

  34. Hsieh DA (1991) Chaos and nonlinear dynamics: Application to financial markets. Journal of Finance 46: 1839–1877

    Article  Google Scholar 

  35. Iwanski JS, Bradley E (1998) Recurrence plots of experimental data: To embed or not to embed? Chaos 8: 861–871

    Article  ADS  PubMed  Google Scholar 

  36. Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge University Press

    Google Scholar 

  37. Kellert SH (1994) In the wake of chaos: Unpredictable order in dynamical systems. University of Chicago Press.

    Google Scholar 

  38. Kesley D (1988) The economics of chaos or the chaos of economics. Oxford Economic Papers 40: 1–31

    Google Scholar 

  39. Kyrtsou C (2005) Evidence for neglected non-linearity in noisy chaotic models. International Journal of Bifurcation and Chaos, in press

    Google Scholar 

  40. Kyrtsou C, Terraza M (2003) Is it possible to study chaotic and ARCH behaviour jointly? Application of a noisy Mackey-Glass equation with heteroskedastic errors to the Paris Stock Exchange returns series. Computational Economics 21: 257–276

    Article  Google Scholar 

  41. Liu T, Granger CWJ, Heller W (1992) Using the correlation exponent to decide if an economic series is chaotic. Journal of Applied Econometrics 7: 25–39

    Article  Google Scholar 

  42. Mandelbrot BB (1982) The fractal geometry of nature. San Francisco: WH Freeman

    Google Scholar 

  43. Mandelbrot BB, Hudson RL (2004) The (mis)behavior of markets: A fractal view of risk, ruin, and reward. Profile Business

    Google Scholar 

  44. Marwan N (2003) Encounters with neighbours: Currenrt developments of concepts based on recurrence plots and their applications. PhD thesis, Institute of Physics, Potsdam University

    Google Scholar 

  45. Matassini L, Kantz H, Holyst J, Hegger R (2002) Optimizing of recurrence plots for noise reduction. Physical Review E 65: 021–102

    Article  Google Scholar 

  46. Mayer-Kress G (1996) Messy futures and global brains. In Kravtsov YA and Kadtke JB (eds) Predictability of complex dynamical systems, Springer Verlag

    Google Scholar 

  47. Mayfield ES, Mizrach B (1992) On determining the dimension of real-time stock-price data. Journal of Business and Economic Statistics 10: 367–374

    Article  Google Scholar 

  48. McKenzie MD (2001) Chaotic behavior in national stock market indices: New evidence from the close returns test. Global Finance Journal 12: 35–53

    Article  Google Scholar 

  49. Mirowski P (1989) ’tis a pity econometrics isn’t an empirical endeavor: Mandelbrot, chaos, and the Noah and Joseph effects. Ricerche Economiche 43: 76–99

    Google Scholar 

  50. Mirowski P (1990) From Mandelbrot to chaos in economic theory. Southern Economic Journal 57: 289–307

    Article  Google Scholar 

  51. Osborne AR, Provenzale A (1989) Finite correlation dimension for stochastic systems with power-law spectra. Physica D 35: 357–381

    Article  ADS  MathSciNet  Google Scholar 

  52. Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Physical Review Letters 64: 1196–1199

    Article  ADS  PubMed  MathSciNet  Google Scholar 

  53. Peters EE (1991) Chaos and order in the capital markets. New York: Wiley

    Google Scholar 

  54. Ramsey JB (1996) If nonlinear models cannot forecast, what use are they? Studies in Nonlinear Dynamics and Econometrics 1: 65–86

    Article  Google Scholar 

  55. Ramsey JB, Sayers CL, Rothman P (1990) The statistical properties of dimension calculations using small data sets: Some economic applications. International Economic Review 31: 991–1020

    Article  Google Scholar 

  56. Sauer T, Yorke JA, Casdagli M (1991) Embedology. Journal of Statistical Physics 65: 579–616

    Article  MathSciNet  Google Scholar 

  57. Scheinkman J (1990) Nonlinearities in economic dynamics. Economic Journal 100: 33–48

    Article  Google Scholar 

  58. Scheinkman JA, LeBaron B (1989) Nonlinear dynamics and stock returns. Journal of Business 62: 311–337

    Article  Google Scholar 

  59. Scheinkman JA, LeBaron B (1989) Nonlinear dynamics and GNP data. In Barnett WA, Geweke J, Shell K (eds) Economic complexity: Chaos, sunspots, bubbles, and nonlinearity, Proceedings of the fourth international symposium in economic theory and econometrics, Cambridge University Press

    Google Scholar 

  60. Sprott C (2003) Chaos and time-series analysis. Oxford University Press

    Google Scholar 

  61. Takens F (1980) Detecting strange attractors in turbulence. In Rand DA, Young L (eds) Dynamical systems and turbulence, Lecture notes in mathematics, Springer-Verlag

    Google Scholar 

  62. Theiler J (1986) Spurious dimensions from correlation algorithms applied to limited time-series data. Physical Review A 34: 2427–2432

    Article  ADS  PubMed  Google Scholar 

  63. Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58: 77–94

    Article  ADS  Google Scholar 

  64. Thiel M, Romano MC, Kurths J (2004) How much information is contained in a recurrence plot? Physics Letters A, forthcoming.

    Google Scholar 

  65. Thiel M, Romano MC, Kurths J, Meucci R, Allaria E, Arecchi FT (2002) Influence of observational noise on the recurrence quantification analysis. Physica D: Nonlinear Phenomena 171: 138–152

    Article  ADS  MathSciNet  Google Scholar 

  66. Thiel M, Romano MC, Read PL, Kurths J (2004) Estimation of dynamical invariants without embedding by recurrence plots. Chaos 14(2)

    Google Scholar 

  67. Webber CL, Zbilut JP (1994) Dynamical assessment of physiological systems and states using recurrence plot strategies. Journal of Applied Physiology 76: 965–973

    PubMed  Google Scholar 

  68. Wolff R (1990) A note on the behaviour of the correlation integral in the presence of a time series. Biometrika 77: 689–697

    Article  MathSciNet  Google Scholar 

  69. Zbilut JP, Webber CL (1992) Embeddings and delays as derived from quantification of recurrence plots. Physics letters A 171: 1991–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kyrtsou, C., Vorlow, C.E. (2005). Complex Dynamics in Macroeconomics: A Novel Approach. In: Diebolt, C., Kyrtsou, C. (eds) New Trends in Macroeconomics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28556-3_11

Download citation

Publish with us

Policies and ethics