Skip to main content

Problems of Cavitative Destruction

  • Chapter
Hydrodynamics of Explosion

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.H. Trevena: Cavitation and Tension in Liquids (Hilger, Bristol Philadelphia 1987)

    Google Scholar 

  2. D.A. Wilson, J.W. Hoyt, J.W. McKune: Measurement of Tensile Strength of Liquid by Explosion Technique, Nature 253, 5494 (1975)

    Google Scholar 

  3. G.A. Carlson, K.W. Henry: Technique for Studying Tension Failure in Application to Glycerol, J. Appl. Phys. 42, 5 (1973)

    Google Scholar 

  4. V.K. Kedrinskii: Surface Effects at Underwater Explosion (Review), Zh. Prikl. Mekh. i Tekh. Fiz. 19,4, pp. 66–87 (1978)

    Google Scholar 

  5. R. Cole: Underwater Explosions (Dover, New York, 1965)

    Google Scholar 

  6. V.K. Kedrinskii: Nonlinear Problems of Cavitative Disintegration of Liquid at Explosive Loading, Zh. Prikl. Mekh. i Tekh. Fiz. 34,3, pp. 74–91 (1993)

    Google Scholar 

  7. F.G. Hammitt, A. Koller, O. Ahmed, J. Pjun, E. Yilmaz: Cavitation threshold and superheat in various fluids. In: Proc. of Conf. on Cavitation (Mech. Eng. Publ. Ltd, London, 1976), pp. 341–354

    Google Scholar 

  8. M. Strasberg: Undissolved air cavities as cavitation nuclei. In: Cavitation in Hydrodynamics (National Phys. Lab., London, 1956)

    Google Scholar 

  9. A.S. Besov, V.K. Kedrinskii, E. I Pal’chikov: Studying of Initial Stage of Cavitation Using Diffraction-Optic Method, Pis’ma Zh. Exp. Teor. Fiz. 10,4, pp. 240–244 (1984)

    Google Scholar 

  10. K.S. Shifrin: Light Diffusion in Turbid Media (Gostekhizdat, Moscow-Leningrad, 1951)

    Google Scholar 

  11. H.C. van de Hulst: Light Scattering by Small Particles (John Wiley, New York, 1957)

    Google Scholar 

  12. L.D. Volovets, N.A. Zlatin, G.S. Pugachev G.S.: Arising and Development of Micro-Cracs, Pis’ma Zh. Exp. Teor. Fiz., Arising and Development of Micro-Crack in Plexiglas at Dynamic Tensile (Spell), 4, pp. 1079–1084 (1978)

    Google Scholar 

  13. V.K. Kedrinskii: Peculiarities of bubble spectrum behavior in the cavitation zone and its effect on wave field parameters. In: Proc. Conf. Ultrasonics Intern. 85 (Gilford, London, 1985), pp. 225–230 (1985)

    Google Scholar 

  14. V.K. Kedrinskii: On relaxation of tensile stresses in cavitating liquid. In: Proc. 13th Intern. Congress on Acoustics, vol 1 (Dragan Srnic Press, Sabac, 1989) pp. 327–330

    Google Scholar 

  15. R.L. Gavrilov: Content of Free Gas in Liquids and Methods of its Measurement, In: L.D. Rozenberg (ed.) Physical Base of Ultrasonic Technology (Nauka, Moscow, 1970), pp. 395–426

    Google Scholar 

  16. M.G. Sirotyuk: Experimental Studying of Ultrasonic Cavitation, In: L.D. Rozenberg (ed.) Strong Ultrasonic Fields, part 4 (Nauka, Moscow, 1968) pp. 75–81

    Google Scholar 

  17. V.K. Kedrinskii: On multiplication mechanism of cavitation nuclei. In: E. Shaw (ed.) Proc. of 12th Int. Congress on Acoustics (Toronto, 1986), pp.14–18 (1986)

    Google Scholar 

  18. V.K. Kedrinskii, V.V. Kovalev, S.I. Plaksin: On Model of Bubbly Cavitation in a Real Liquid, Zh. Prikl. Mekh. i Tekh. Fiz. 27,5, pp. 81–85 (1986)

    Google Scholar 

  19. V.K. Kedrinskii: Dynamics of Cavitation Zone at Underwater Explosion Near Free Surface, Zh. Prikl. Mekh. i Tekh. Fiz. 16,5, pp. 68–78 (1975)

    Google Scholar 

  20. I. Hansson, V. Kedrinskii, K. Morch: On the Dynamics of Cavity Cluster, J. Phys. D Appl. Phys. 15, pp. 1725–1734 (1982)

    Article  Google Scholar 

  21. V.K. Kedrinskii: Perturbation Propagation in Liquid with Gas Bubbles, Zh. Prikl. Mekh. i Tekh. Fiz. 9,4, pp. 29–34 (1968)

    Google Scholar 

  22. V.K. Kedrinskii: Negative Pressure Profile in Cavitation Zone at Underwater Explosion Near Free Surface, Acta Astron. 3,7–8, pp. 623–632 (1976)

    Article  Google Scholar 

  23. V.K. Kedrinskii, S. Plaksin: Rarefaction wave structure in a cavitating liquid. In: V.K. Kedrinskii (ed.) Problems of Nonlinear Acoustics: Proc. of IUPAP-IUTAM Symposium on Nonlinear Acoustics, Part 1 (Novosibirsk, 1987), pp. 51–55

    Google Scholar 

  24. N.N. Chernobaev: Modeling of shock-wave loading of liquid volumes. In: S. Morioka, L. van Wijngaarden (eds.) Proc. IUTAM Symposium on Adiabatic Waves in Liquid-Vapor Systems, (Springer, Berlin Heidelberg New York, 1989), pp. 361–370

    Google Scholar 

  25. V.K. Kedrinskii: The Experimental Research and Hydrodynamic Models of a “Sultan”, Arch. Mech. 26,3, pp. 535–540 (1974)

    Google Scholar 

  26. S.V. Stebnovskii: On Mechanism of Pulse Fracture of Liquid Volume, Zh. Prikl. Mekh. i Tekh. Fiz. 20,2, pp. 126–132 (1989)

    Google Scholar 

  27. A. Berngardt, E. Bichenkov, V. Kedrinskii, E. Pal’chikov: Optic and X-ray investigation of water fracture in rarefaction wave at later stages. In: M. Pichal (ed.) Proc. IUTAM Symp. on Optical Methods in the Dynamics of Fluids and Solids, (Prague, 1984, Springer, Berlin, Heidelberg, New York, 1985), pp. 137–142

    Google Scholar 

  28. A.R. Berngardt, V.K. Kedrinskii, E.I. Pal’chikov: Evolution of Internal Structure of Zone of Liquid Fracture at Pulse Loading, Zh. Prikl. Mekh. i Tekh. Fiz. 36,2, pp. 99–105 (1995)

    Google Scholar 

  29. Berngardt A.R.: Dynamics of the cavitation zone under impulsive loading of a Liquid. PhD Thesis, Novosibirsk (1995)

    Google Scholar 

  30. A.S. Besov, V.K. Kedrinskii, E.I. Pal’chikov: On threshold cavitation effects in pulse rarefaction waves. In: P. Pravica (ed.) Proc. of 13th Int. Congress on Acoustics vol. 1 (Dragan Srnic Press, Sabac, 1989), pp. 355–358

    Google Scholar 

  31. I.G. Getz, V.K. Kedrinskii: Dynamics of Explosive Loading of Two-Phase Volume, Zh. Prikl. Mekh. i Tekh. Fiz. 30,2, pp. 120–125 (1989)

    Google Scholar 

  32. A.V. Anilkumar: Experimental studies of high-speed dense dusty gases: Thesis, Pasadena (1989)

    Google Scholar 

  33. V.K. Kedrinskii, A.S. Besov, I.E. Gutnik: Inversion of Two-Phase State of Liquid at Pulse Loading, Dokl. RAN 352,4, pp. 477–479 (1997)

    Google Scholar 

  34. M.N. Davydov: Development of Cavitation in a Drop at Shock-Wave Loading, Dynamics of Continue Medium (Lavrentyev Institute of Hydrodynamics, Novosibirsk, 2001) 117, pp. 17–20

    Google Scholar 

  35. M.N. Davydov, V.K. Kedrinskii: Two-Phase Models of Cavitative Spell Formation in Liquid, J. Appl. Mech. Techn. Phys. 44,5 (2003) pp. 72–79

    Google Scholar 

  36. A.S. Besov, V.K. Kedrinskii, E.I. Palchikov: On Threshold Effects in Pulse Rarefaction Wave, Pis’ma Zh. Exp. Teor. Fiz. 15,16, pp. 23–27 (1989)

    Google Scholar 

  37. M. Cornfeld: Elasticity and Strength of Liquids (Inostrannaya Literatura, Moscow, 1951), p. 46

    Google Scholar 

  38. L.Y. Briggs: Appl. Phys., 26 (1955); 21 (1950)

    Google Scholar 

  39. R. Knepp, J. Daily, F. Hammit: Cavitation (Mir, Moscow, 1974)

    Google Scholar 

  40. A.D. Pernik: Cavitation Problems (Sudostroenie, Leningrad, 1966)

    Google Scholar 

  41. A. Besov, V. Kedrinskii: Dynamics of bubbly clusters and free surface at shock wave reflection. In: J. Blake, J. Boulton-Stone, N. Thomas (eds.) Proc. Intern. Symp. on Bubble Dynamics and Interface Phenomena (Birmingham, 6–9 Sept. 1993, Kluwer Academic Publisher, 1994), pp. 93–103

    Google Scholar 

  42. N.F. Morozov, Yu.V. Petrov, A.A. Utkin: Dokl. Akad. Nauk 313,2 (1990)

    Google Scholar 

  43. N.F. Morozov, Yu.V. Petrov: Problems of Dynamics of Failure of Solids (St. Petersburg University Publishers, St. Petersburg, 1997) p. 132

    Google Scholar 

  44. A.A. Gruzdkov, Yu.V. Petrov: Dokl. Akad. Nauk 364,6 (1999)

    Google Scholar 

  45. A.S. Besov, V.K. Kedrinskii, N.F. Morozov, Yu.V. Petrov, A.A. Utkin: On Analogy of Initial Stage of Fracture of Solids and Liquids at Pulse Loading, Dokl. Akad. Nauk 378,3, pp. 333–335 (2001)

    Google Scholar 

  46. E.N. Harvey, A.H. Whiteley, W.D. McElroy et al.: Bubble Formation in Animals. II. Gas Nuclei and Their Distribution in Blood and Tissues, J. Cell. Compar. Physiol. 24,1 (1944)

    Google Scholar 

  47. A.S. Besov, V.K. Kedrinskii, Y. Matsumoto et al.: Microinhomogeneity structures and hysteresis effects in cavitating liquids. In: Proc. 14th Int. Congress on Acoustics (Beijing, 1992), pp. 1–3

    Google Scholar 

  48. T. Okada, Y. Iwai, A. Yamamoto: A Study of Cavitation Erosion of Cast Iron, J. Wear, 84 (1983)

    Google Scholar 

  49. T. Okada, Y. Iwai, Y. Hosokawa: Comparison of Surface Damage Caused by Sliding Wear and Cavitation Erosion on Mechanical Face Seal, J. Tribology, 42 (1984)

    Google Scholar 

  50. Y. Tomita, A. Shima, K. Takayama: Formation and limitation of damage pits caused by bubble-shock wave interaction. In: K. Takayama (ed.) Proc. National Symp. Shock Wave Phenomena, (Tohoku 1989)

    Google Scholar 

  51. N. Sanada, A. Asano, J. Ikeuchi et al.: Interaction of a gas bubble with an underwater shock wave, pit formation on the metal surface. In: Proc. 16th Int. Symp. Shock Tubes and Waves (VCH Publ., Weinheim, 1988)

    Google Scholar 

  52. V. Makarov, A.A. Kortnev, S.G. Suprun, G.I. Okolelov: Cavitation erosion and spectrum analysis of pressure pulse heights produced by cavitation bubbles. In: Proc. 6th Int. Symp. Nonlinear Acoustics, vol. 2 (Moscow State Univ., Moscow, 1976)

    Google Scholar 

  53. S. Fujikawa, T. Akamatsu: Experimental Investigations of Cavitation Bubble Collapse by a Water Shock Tube, Bull. ASME 21, 152 (1978)

    Google Scholar 

  54. R. Ivany, F. Hammitt: Cavitation Bubble Collapse in Viscous Compressible Liquids Numerical Analysis, Trans. ASME. Ser. D. 4 (1965)

    Google Scholar 

  55. V.K. Kedrinskii, V.A. Stepanov: Cavitation effects in thin films In: M. Hamilton, D. Blackstock (eds.) Proc. 12th ISNA, Frontiers of Nonlinear Acoustics (Elsevier Applied Sci., London New York, 1990), pp. 470–475 (1990)

    Google Scholar 

  56. V.P. Alekseevskii: On the Theory of Armor Perforation by Cumulative Jets (UkrSSR Academy of Sciences Publishers, Kiev, 1953)

    Google Scholar 

  57. M.A. Lavrentiev: Cumulative Charge and Principle of its Action, Uspekhi Mat. Nauk 12,4, pp. 41–52 (1957)

    Google Scholar 

  58. K.A. Kurbatskii, V.K. Kedrinskii: Collapse of a bubble in the cavitation zone near a rigid boundary. In: Abstr. 124th Meeting of ASA (New Orleans, 1992)

    Google Scholar 

  59. H. Takahira, T. Akamatsu, S. Fujikawa: JSME Intern J, Series B-Fluids and Therm. Eng. 37:2 (1994) pp. 297–305

    Google Scholar 

  60. H. Takahira: JSME Intern J, Series B-Fluids and Therm. Eng. 40:2 (1997) pp. 230–239

    Google Scholar 

  61. H. Takahira, S. Yamane, T. Akamatsu: JSME Intern J, Series B-Fluids and Therm. Eng. 38:3 (1995) pp. 432–439

    Google Scholar 

  62. S. Ceccio, S. Gowing, Y.T. Shen: Journal of Fluids Engineering-Transactions of the ASME 119,1 (1997) pp. 155–163

    Google Scholar 

  63. M. Thiel, M. Nieswand, M. Dorffel: Minimally Invasive Therapy and Allied Technologies 9,3–4 (2000) pp. 247–253

    Google Scholar 

  64. M. Thiel: Clinical Orthopaedics and Related Research 387, (2001) pp. 18–21

    Article  PubMed  Google Scholar 

  65. D.L. Sokolov, M.R. Bailey, L.A. Crum: Ultrasound in Medicine and Biology, 29,7 (2003) pp. 1045–1052

    Article  PubMed  Google Scholar 

  66. S.L. Zhu SL, F.H. Cocks, G.M. Preminger, P. Zhong: Ultrasound in Medicine and Biology, 28,5 (2002) pp. 661–671

    Article  PubMed  Google Scholar 

  67. V.K. Kedrinskii: On a mechanism of target disintegration at shock wave focusing in ESWL.: In: P.K. Kuhl, L. Crum (eds.) Proc.16th Intern. Congress on Acoustics, Seattle, USA, vol. 4 (University of Washington, Washington, 1998) pp. 2803–2804

    Google Scholar 

  68. W. Eisenmenger: Ultrasound in Medicine and Biology 27,5 (2001) pp. 683–693

    Article  PubMed  Google Scholar 

  69. R.O. Cleveland, D.A. Lifshitz, B.A. Connors et al.: Ultrasound in Medicine and Biology 24,2 (1998) pp. 293–306

    Article  PubMed  Google Scholar 

  70. T. Kodama, H. Uenohara, K. Takayama: Ultrasound in Medicine and Biology 24,9 (1998) pp. 1459–1466

    Article  PubMed  Google Scholar 

  71. T. Kodama, M. Tatsuno, S. Sugimoto et al.: Ultrasound in Medicine and Biology, 25,6 (1999) pp. 977–983

    Article  PubMed  Google Scholar 

  72. T. Kodama, K. Takayama: Ultrasound in Medicine and Biology 24,5 (1998) pp. 723–738

    Article  PubMed  Google Scholar 

  73. M. Delius, F. Ueberle, W. Eisenmenger: Ultrasound in Medicine and Biology 24,7 (1998) pp. 1055–1059

    Article  PubMed  Google Scholar 

  74. C.M. Zapanta, E.G. Liszka, T.C. Lamson et al.: J. Biomech. Engin.-Trans. Asme 116,4 (1994) pp. 460–468

    Google Scholar 

  75. J.C. Williams, M.A. Stonehill, K. Colmenares et al.: Ultrasound in Medicine and Biology 25,3 (1999) pp. 473–479

    Article  PubMed  Google Scholar 

  76. D. Howard, B. Sturtevant: Ultrasound in Medicine and Biology 23,7 (1997) pp. 1107–1122

    Article  PubMed  Google Scholar 

  77. M. Delius: Zentralblatt für Chirurgie, 120,4 (1995) pp. 259–273

    PubMed  Google Scholar 

  78. K. Takayama: Japan. J. Appl. Phys., Part 1, Regular Papers Short Notes and Review Papers, 32,5B (1993) pp. 2192–2198

    Article  Google Scholar 

  79. D.L. Miller, J.M. Song: Ultrasound in Medicine and Biology, 28,10 (2002) pp. 1343–1348

    Article  PubMed  Google Scholar 

  80. H. Grönig: Past, present and future of shock focusing research. In: Proc. Intern. Workshop on Shock Wave Focusing (Sendai, 1989) pp. 1–38

    Google Scholar 

  81. B. Sturtevant: The physics of shock focusing in the context of ESWL. In: Proc. Intern. Workshop on Shock Wave Focusing (Sendai, 1989) pp. 39–64

    Google Scholar 

  82. M. Kuwahara: Extracorporeal shock wave lithotripsy. In: Proc. Intern. Workshop on Shock Wave Focusing (Sendai, 1989) pp. 65–89

    Google Scholar 

  83. O. Kitayama, H. Ise, T. Sato, K. Takayama: Non-invasive gallstone disintegration by underwater shock focusing. In: H. Grönig (ed.) Proc. 16th Intern. Symp. on Shock Tubes and Waves (VCH, Aachen, 1987) pp. 897–904

    Google Scholar 

  84. M. Grunevald, H. Koch, H. Hermeking: Modeling of shock wave propagation and tissue interaction during ESWL. In: H. Grönig (ed.) Proc. 16th Intern. Symp. on Shock Tubes and Waves (VCH, Aachen, 1987) pp. 889–895

    Google Scholar 

  85. M. Delius: Effect of lithotriptor shock waves on tissues and materials. In: M. Hamilton, D. Blackstock (eds.) Proc. 12th ISNA, Frontiers of Nonlinear Acoustics, (ESP Ltd, London, 1990) pp. 31–46

    Google Scholar 

  86. V.K. Kedrinskii, R.I. Soloukhin: Collapse of a Spherical Gas Bubble in Water by a Shock Wave, J. Applied Mechanics and Technical Physics 2,1, pp. 27–29 (1961)

    Google Scholar 

  87. C. Church, L. Crum: A theoretical study of cavitation generated by four commercially available ESWL. In: M. Hamilton, D. Blackstock (eds.) Proc. 12th ISNA, Frontiers of Nonlinear Acoustics, (ESP Ltd, London, 1990) pp. 433–438

    Google Scholar 

  88. C. Church: A Theoretical Study of Cavitation Generated by an Extracorporeal Shock Wave Lithotripter, J. Acoust. Soc. Am. 86,1, pp. 215–227 (1989)

    Article  PubMed  Google Scholar 

  89. F. Prat: The cytotoxicity of shock waves: cavitation and its potential application to the extra-corporeal therapy of digestive tumors. In: Brun, Dumitrescu (eds.) Proc. 19th Int. Symp. on Shock Waves, (Marseille, 1993)

    Google Scholar 

  90. H. Nagoya, T. Obara, K. Takayama: Underwater shock wave propagation and focusing in inhomogeneous media. In: Brun, Dumitrescu (eds.) Proc. 19th Int. Symp. on Shock Waves, vol. 3 (Marseille, 1993) pp. 439–444

    Google Scholar 

  91. C. Stuka, P. Sunka, J. Benes: Nonlinear transmission of the focused shock waves in nondegassed water. In: Brun, Dumitrescu (eds.) Proc. 19th Int. Symp. on Shock Waves, vol. 3 (Marseille, 1993) pp. 445–448

    Google Scholar 

  92. E. Sato et al.: Soft flash X-ray system for shock wave research. In: Brun, Dumitrescu (eds.) Proc. 19th Int. Symp. on Shock Waves, vol. 3 (Marseille, 1993) pp. 449–454

    Google Scholar 

  93. I. Bayikov, A. Berngardt, V. Kedrinskii, E. Pal’chikov: Experimental Methods of Study of Cavitative Cluster Dynamics, Zh. Prikl. Mekh. i Tekh. Fiz. 25,5, pp. 30–34 (1984)

    Google Scholar 

  94. K. Isuzugawa, M. Fujii, Y. Matsubara et al.: Shock focusing across a layer between two kinds of liquid. In: Brun, Dumitrescu (eds.) Proc. 19th Int. Symp. on Shock Waves (Marseille, 1993)

    Google Scholar 

  95. J.E. Field, M.B. Lesser, J.P. Dear: Proc. Roy. Soc. London A, 401 (1985)

    Google Scholar 

  96. I.R. Shreiber: Acustica 83,6 (1997) pp. 987–991

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Problems of Cavitative Destruction. In: Hydrodynamics of Explosion. High-Pressure Shock Compression of Condensed Matter. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28563-6_7

Download citation

Publish with us

Policies and ethics