Skip to main content

Plasmodium Permeomics: Membrane Transport Proteins in the Malaria Parasite

  • Chapter
Malaria: Drugs, Disease and Post-genomic Biology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 295))

Abstract

Membrane transport proteins are integral membrane proteins that mediate the passage across the membrane bilayer of specific molecules and/or ions. Such proteins serve a diverse range of physiological roles, mediating the uptake of nutrients into cells, the removal of metabolic wastes and xenobiotics (including drugs), and the generation and maintenance of transmembrane electrochemical gradients. In this chapter we review the present state of knowledge of the membrane transport mechanisms underlying the cell physiology of the intraerythrocytic malaria parasite and its host cell, considering in particular physiological measurements on the parasite and parasitized erythrocyte, the annotation of transport proteins in the Plasmodium genome, and molecular methods used to analyze transport protein function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, Guggino WB, Nielsen S (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 265:F463–F476

    PubMed  CAS  Google Scholar 

  2. Alkhalil A, Cohn JV, Wagner MA, Cabrera JS, Rajapandi T, Desai SA (2004) Plasmodium falciparum likely encodes the principal anion channel on infected human erythrocytes. Blood 104:4279–4286

    Article  PubMed  CAS  Google Scholar 

  3. Allen RJW, Kirk K (2004) The membrane potential of the intraerythrocytic malaria parasite Plasmodium falciparum. J Biol Chem 279:11264–11272

    Article  PubMed  CAS  Google Scholar 

  4. Allen RJW, Kirk K (2004) Cell volume control in the Plasmodium-infected erythrocyte. Trends Parasitol 20:7–10

    Article  PubMed  Google Scholar 

  5. Alleva LM, Kirk K (2001) Calcium regulation in the intraerythrocytic malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 117:121–128

    Article  PubMed  CAS  Google Scholar 

  6. Ansorge I, Benting J, Bhakdi S, Lingelbach K (1996) Protein sorting in Plasmodium falciparum-infected red blood cells permeabilized with the pore-forming protein streptolysin O. Biochem J 315:307–314

    PubMed  CAS  Google Scholar 

  7. Ansorge I, Paprotka K, Bhakdi S, Lingelbach K (1997) Permeabilization of the erythrocyte membrane with streptolysin O allows access to the vacuolar membrane of Plasmodium falciparum and a molecular analysis of membrane topology. Mol Biochem Parasitol 84:259–261

    Article  PubMed  CAS  Google Scholar 

  8. Bhaduri-McIntosh S, Vaidya AB (1998) Plasmodium falciparum: import of a phosphate carrier protein into heterologous mitochondria. Exp Parasitol 88:252–254

    Article  PubMed  CAS  Google Scholar 

  9. Biagini GA, Bray PG, Spiller DG, White MR, Ward SA (2003) The digestive food vacuole of the malaria parasite is a dynamic intracellular Ca2+ store. J Biol Chem 278:27910J. Biol. Chem. 27915

    Article  PubMed  CAS  Google Scholar 

  10. Biagini GA, Pasini EM, Hughes RH, De Koning H, Vial HJ, O’Neill PM, Ward SA, Bray PG (2004) Characterization of the choline carrier of Plasmodium falciparum: a route for the selective delivery of novel antimalarial drugs. Blood 104:3372–3377

    Article  PubMed  CAS  Google Scholar 

  11. Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1:85–100

    Article  CAS  Google Scholar 

  12. Bray PG, Saliba KJ, Davies JD, Spiller DG, White MR, Kirk K, Ward SA (2002) Distribution of acridine orange fluorescence in Plasmodium falciparum-infected erythrocytes and its implications for the evaluation of digestive vacuole pH. Mol Biochem Parasitol 119:301–304; discussion 307-309, 311-313

    PubMed  CAS  Google Scholar 

  13. Caldas ML, Wasserman M (2001) Cytochemical localisation of calcium ATPase activity during the erythrocytic cell cycle of Plasmodium falciparum. Int J Parasitol 31:776–782

    PubMed  CAS  Google Scholar 

  14. Carter NS, Ben Mamoun C, Liu W, Silva EO, Landfear, SM, Goldberg DE, Ullman B (2000) Isolation and functional characterization of the PfNT1 nucleoside transporter gene from Plasmodium falciparum. J Biol Chem 275:10683–10691

    PubMed  CAS  Google Scholar 

  15. Cereghino GP, Cregg JM (1999) Applications of yeast in biotechnology: protein production and genetic analysis. Curr Opin Biotechnol 10:422–427

    Article  PubMed  CAS  Google Scholar 

  16. Choi I, Mikkelsen RB (1990) Plasmodium falciparum: ATP/ADP transport across the parasitophorous vacuolar and plasma membranes. Exp Parasitol 71:452–462

    Article  PubMed  CAS  Google Scholar 

  17. Clements JD, Martin RE (2002) Identification of novel membrane proteins by searching for patterns in hydropathy profiles. Eur J Biochem 269:2101–2107

    Article  PubMed  CAS  Google Scholar 

  18. Cooper RA, Ferdig MT, Su XZ, Ursos LM, Mu J, Nomura T, Fujioka H, Fidock DA, Roepe PD, Wellems TE (2002) Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum. Mol Pharmacol 61:35–42

    Article  PubMed  CAS  Google Scholar 

  19. Cowman AF, Karcz S, Galatis D, Culvenor JG (1991) AP-glycoprotein homologue of Plasmodium falciparum is localized on the digestive vacuole. J Cell Biol 113:1033–1042

    Article  PubMed  CAS  Google Scholar 

  20. Cranmer SL, Conant AR, Gutteridge WE, Halestrap AP (1995) Characterization of the enhanced transport of L-and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter. J Biol Chem 270:15045–15052

    PubMed  CAS  Google Scholar 

  21. Desai SA, Krogstad DJ, McCleskey EW (1993) A nutrient-permeable channel on the intraerythrocytic malaria parasite. Nature 362:643–646

    Article  PubMed  CAS  Google Scholar 

  22. Desai SA, Rosenberg RL (1997) Pore size of the malaria parasite’s nutrient channel. Proc Natl Acad Sci USA 94:2045–2049

    PubMed  CAS  Google Scholar 

  23. Desai SA, Bezrukov SM, Zimmerberg J (2000) A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature 406:1001–1005

    Article  PubMed  CAS  Google Scholar 

  24. Divo AA, Geary TG, Davis NL, Jensen JB (1985) Nutritional requirements of Plasmodium falciparum in culture. I. Exogenously supplied dialyzable components necessary for continuous growth. J Protozool 32:59–64

    PubMed  CAS  Google Scholar 

  25. Duraisingh MT, Triglia T, Cowman AF (2002) Negative selection of Plasmodium falciparum reveals targeted gene deletion by double crossover recombination. Int J Parasitol 32:81–89

    PubMed  CAS  Google Scholar 

  26. Duranton C, Huber SM, Lang F (2002) Oxidation induces a Cl--dependent cation conductance in human red blood cells. J Physiol 539:847–855

    Article  PubMed  CAS  Google Scholar 

  27. Duranton C, Huber S, Tanneur V, Lang K, Brand V, Sandu C, Lang F (2003) Electrophysiological properties of the Plasmodium falciparum-induced cation conductance of human erythrocytes. Cell Physiol Biochem 13:189–198

    Article  PubMed  CAS  Google Scholar 

  28. Duranton C, Huber SM, Tanneur V, Brand VB, Akkaya C, Shumilina EV, Sandu CD, Lang F (2004) Organic osmolyte permeabilities of the malaria-induced anion conductances in human erythrocytes. J Gen Physiol 123:417–426

    Article  PubMed  CAS  Google Scholar 

  29. Dyer M, Jackson M, McWhinney C, Zhao G, Mikkelsen R (1996) Analysis of a cation-transporting ATPase of Plasmodium falciparum. Mol Biochem Parasitol 78:1–12

    Article  PubMed  CAS  Google Scholar 

  30. Dzekunov SM, Ursos LM, Roepe PD (2000) Digestive vacuolar pH of intact intraerythrocytic P. falciparum either sensitive or resistant to chloroquine. Mol Biochem Parasitol 110:107–124

    Article  PubMed  CAS  Google Scholar 

  31. Eckstein-Ludwig U, Webb RJ, Van Goethem ID, East JM, Lee AG, Kimura M, O’Neill PM, Bray PG, Ward SA, Krishna S (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424:957–961

    Article  PubMed  CAS  Google Scholar 

  32. Egée S, Lapaix F, Decherf G, Staines HM, Ellory JC, Doerig C, Thomas SL (2002) A stretch-activated anion channel is up-regulated by the malaria parasite Plasmodium falciparum. J Physiol 542:795–801

    PubMed  Google Scholar 

  33. El Tahir A, Malhotra P, Chauhan VS (2003) Uptake of proteins and degradation of human serum albumin by Plasmodium falciparum-infected human erythrocytes. Malaria J 2:11

    Google Scholar 

  34. Ellekvist P, Ricke CH, Litman T, Salanti A, Colding H, Zeuthen T, Klaerke DA (2004) Molecular cloning of a K+ channel from the malaria parasite Plasmodium falciparum. Biochem Biophys Res Commun 318:477–484

    Article  PubMed  CAS  Google Scholar 

  35. Elliott JL, Saliba KJ, Kirk K (2001) Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum. Biochem J 355:733–739

    PubMed  CAS  Google Scholar 

  36. Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LM, Sidhu AB, Naude B, Deitsch KW, Su XZ, Wootton JC, Roepe PD, Wellems, TE (2000) Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6:861–871

    Article  PubMed  CAS  Google Scholar 

  37. Foote SJ, Thompson JK, Cowman AF, Kemp DJ (1989) Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell 57:921–930

    Article  PubMed  CAS  Google Scholar 

  38. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    PubMed  CAS  Google Scholar 

  39. Gazarini ML, Thomas AP, Pozzan T, Garcia CR (2003) Calcium signaling in a low calcium environment: how the intracellular malaria parasite solves the problem. J Cell Biol 161:103–110

    Article  PubMed  CAS  Google Scholar 

  40. Gero AM, Dunn CG, Brown DM, Pulenthiran K, Gorovits EL, Bakos T, Weis AL (2003) New malaria chemotherapy developed by utilization of a unique parasite transport system. Curr Pharm Des 9:867–877

    Article  PubMed  CAS  Google Scholar 

  41. Ginsburg H, Kutner S, Krugliak M, Cabantchik ZI (1985) Characterization of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells. Mol Biochem Parasitol 14:313–322

    Article  PubMed  CAS  Google Scholar 

  42. Ginsburg H, Stein WD (2004) The new permeability pathways induced by the malaria parasite in the membrane of the infected erythrocyte: comparison of results using different experimental techniques. J Membr Biol 197:113–134

    Article  PubMed  CAS  Google Scholar 

  43. Goodyer ID, Hayes DJ, Eisenthal R (1997) Efflux of 6-deoxy-D-glucose from Plasmodium falciparum-infected erythrocytes via two saturable carriers. Mol Biochem Parasitol 84:229–239

    Article  PubMed  CAS  Google Scholar 

  44. Griffith DA, Delipala C, Leadsham J, Jarvis SM, Oesterhelt D (2003) A novel yeast expression system for the overproduction of quality-controlled membrane proteins. FEBS Lett 553:45–50

    Article  PubMed  CAS  Google Scholar 

  45. Hansen M, Kun JF, Schultz JE, Beitz E (2002) A single, bi-functional aquaglyceroporin in blood-stage Plasmodium falciparum malaria parasites. J Biol Chem 277:4874–4882

    PubMed  CAS  Google Scholar 

  46. Hayashi M, Yamada H, Mitamura T, Horii T, Yamamoto A, Moriyama Y (2000) Vacuolar H+-ATPase localized in plasma membranes of malaria parasite cells, Plasmodium falciparum, is involved in regional acidification of parasitised erythrocytes. J Biol Chem 275:34353–34358

    PubMed  CAS  Google Scholar 

  47. Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987) Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330:379–381

    Article  PubMed  CAS  Google Scholar 

  48. Hong W, Tang BL (1993) Protein trafficking along the exocytotic pathway. Bioessays 15:231–238

    Article  PubMed  CAS  Google Scholar 

  49. Huber SM, Uhlemann AC, Gamper NL, Duranton C, Kremsner PG, Lang F (2002) Plasmodium falciparum activates endogenous Cl- channels of human erythrocytes by membrane oxidation. EMBO J. 21:22–30

    Article  PubMed  CAS  Google Scholar 

  50. Huber SM, Duranton C, Henke G, Van De Sand C, Heussler V, Shumilina E, Sandu CD, Tanneur V, Brand V, Kasinathan RS, Lang KS, Kremsner PG, Hubner CA, Rust MB, Dedek K, Jentsch TJ, Lang F (2004) Plasmodium induces swelling-activated ClC-2 anion channels in the host erythrocyte. J Biol Chem

    Google Scholar 

  51. Huestis R, Fischer K (2001) Prediction of many new exons and introns in Plasmodium falciparum chromosome 2. Mol Biochem Parasitol 118:187–199

    Article  PubMed  CAS  Google Scholar 

  52. Joet T, Holterman L, Stedman TT, Kocken CH, Van Der Wel A, Thomas AW, Krishna S (2002) Comparative characterization of hexose transporters of Plasmodium knowlesi, Plasmodium yoelii and Toxoplasma gondii highlights functional differences within the apicomplexan family. Biochem J 368:923–929

    PubMed  CAS  Google Scholar 

  53. Joet T, Eckstein-Ludwig U, Morin C, Krishna S (2003) Validation of the hexose transporter of Plasmodium falciparum as a novel drug target. Proc Natl Acad Sci USA 100:7476–7479

    Article  PubMed  CAS  Google Scholar 

  54. Joet T, Chotivanich K, Silamut K, Patel AP, Morin C, Krishna S (2004) Analysis of Plasmodium vivax hexose transporters and characterization of a parasitocidal inhibitor. Biochem J 381:905–909

    PubMed  CAS  Google Scholar 

  55. Kanaani J, Ginsburg H (1989) Metabolic interconnection between the human malarial parasite Plasmodium falciparum and its host erythrocyte. Regulation of ATP levels by means of an adenylate translocator and adenylate kinase. J Biol Chem 264:3194–3199

    PubMed  CAS  Google Scholar 

  56. Kanaani J, Ginsburg H (1991) Transport of lactate in Plasmodium falciparum-infected human erythrocytes. J Cell Physiol 149:469–476

    Article  PubMed  CAS  Google Scholar 

  57. Karcz SR, Herrmann VR, Cowman AF (1993) Cloning and characterization of a vacuolar ATPase A subunit homologue from Plasmodium falciparum. Mol Biochem Parasitol 58:333–344

    PubMed  CAS  Google Scholar 

  58. Karcz SR, Herrmann VR, Trottein F, Cowman AF (1994) Cloning and characterization of the vacuolar ATPase B subunit from Plasmodium falciparum. Mol Biochem Parasitol 65:123–133

    Article  PubMed  CAS  Google Scholar 

  59. Kirk K, Horner HA, Elford BC, Ellory JC, Newbold CI (1994) Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional characteristics of a chloride channel. J Biol Chem 269:3339–3347

    PubMed  CAS  Google Scholar 

  60. Kirk K, Horner HA, Kirk J (1996) Glucose uptake in Plasmodium falciparum-infected erythrocytes is an equilibrative not an active process. Mol Biochem Parasitol 82:195–205

    Article  PubMed  CAS  Google Scholar 

  61. Kirk K, Staines HM, Martin RE, Saliba KJ. (1999) In: Transport and trafficking in the malaria-infected erythrocyte. Novartis Foundation Symposium 226. Novartis Foundation, Wiley, Chichester, pp 55–73

    Google Scholar 

  62. Kirk K (2001) Membrane transport in the malaria-infected erythrocyte. Physiol Rev 81:495–537

    PubMed  CAS  Google Scholar 

  63. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292

    Article  PubMed  CAS  Google Scholar 

  64. Krishna S, Webb R, Woodrow C (2001) Transport proteins of Plasmodium falciparum: defining the limits of metabolism. Int J Parasitol 31:1331–1342

    PubMed  CAS  Google Scholar 

  65. Krishna S, Woodrow C, Webb R, Penny J, Takeyasu K, Kimura M, East JM (2001) Expression and functional characterization of a Plasmodium falciparum Ca2+-ATPase (PfATP4) belonging to a subclass unique to apicomplexan organisms. J Biol Chem 276:10782–10787

    Article  PubMed  CAS  Google Scholar 

  66. Krogstad DJ, Schlesinger PH, Gluzman IY (1985) Antimalarials increase vesicle pH in Plasmodium falciparum. J Cell Biol 101:2302–2309

    Article  PubMed  CAS  Google Scholar 

  67. Krugliak M, Zhang J, Ginsburg H (2002) Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. Mol Biochem Parasitol 119:249–256

    Article  PubMed  CAS  Google Scholar 

  68. Kumar R, Adams B, Oldenburg A, Musiyenko A, Barik S (2002) Characterisation and expression of a PP1 serine/threonine protein phosphatase (PfPP1) from the malaria parasite, Plasmodium falciparum: demonstration of its essential role using RNA interference. Malaria J 1:5

    Google Scholar 

  69. Lambros C, Vanderberg JP (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 65:418–420

    PubMed  CAS  Google Scholar 

  70. Lehane AM, Saliba KJ, Allen RJW, Kirk K (2004) Choline uptake into the malaria parasite is energised by the membrane potential. Biochem Biophys Res Commun 320:311–317

    Article  PubMed  CAS  Google Scholar 

  71. Malhotra P, Dasaradhi PV, Kumar A, Mohmmed A, Agrawal N, Bhatnagar RK, Chauhan VS (2002) Double-stranded RNA-mediated gene silencing of cysteine proteases (falcipain-1 and-2) of Plasmodium falciparum.Mol Microbiol 45:1245–1254

    Article  PubMed  CAS  Google Scholar 

  72. Marchesini N, Luo S, Rodrigues CO, Moreno SN, Docampo R (2000) Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites. Biochem J 347:243–253

    Article  PubMed  CAS  Google Scholar 

  73. Martin RE, Henry RI, Abbey JL, Clements JD, Kirk K (2005) The ‘permeome’ of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum. Genome Biol 6:R26

    Article  PubMed  Google Scholar 

  74. Martin RE, Kirk K (2004) The malaria parasite’s chloroquine resistance transporter is a member of the drug/metabolite transporter superfamily. Mol Biol Evol 21:1938–1949

    PubMed  CAS  Google Scholar 

  75. McIntosh MT, Drozdowicz YM, Laroiya K, Rea PA, Vaidya AB (2001) Two classes of plant-like vacuolar-typeH+-pyrophosphatases in malaria parasites. Mol Biochem Parasitol 114:183–195

    Article  PubMed  CAS  Google Scholar 

  76. McRobert L, McConkey GA (2002) RNA interference (RNAi) inhibits growth of Plasmodium falciparum. Mol Biochem Parasitol 119:273–278

    Article  PubMed  CAS  Google Scholar 

  77. Milek RL, Stunnenberg HG, Konings RN (2000) Assembly and expression of a synthetic gene encoding the antigen Pfs48/45 of the human malaria parasite Plasmodium falciparum in yeast. Vaccine 18:1402–1411

    Article  PubMed  CAS  Google Scholar 

  78. Mohmmed A, Dasaradhi PV, Bhatnagar RK, Chauhan VS, Malhotra P (2003) In vivo gene silencing in Plasmodium berghei — a mouse malaria model. Biochem Biophys Res Commun 309:506–511

    Article  PubMed  CAS  Google Scholar 

  79. Nessler S, Friedrich O, Bakouh N, Fink RH, Sanchez CP, Planelles G, Lanzer M (2004) Evidence for activation of endogenous transporters in Xenopus laevis oocytes expressing the Plasmodium falciparum chloroquine resistance transporter PfCRT. J Biol Chem 279:39438–39446

    Article  PubMed  CAS  Google Scholar 

  80. Nyalwidhe J, Baumeister S, Hibbs AR, Tawill S, Papakrivos J, Volker U, Lingelbach K (2002) A nonpermeant biotin derivative gains access to the parasitophorous vacuole in Plasmodium falciparum-infected erythrocytes permeabilized with streptolysin O. J Biol Chem 277:40005–40011

    Article  PubMed  CAS  Google Scholar 

  81. Parker MD, Hyde RJ, Yao SY, McRobert L, Cass CE, Young JD, McConkey GA, Baldwin SA (2000) Identification of a nucleoside/nucleobase transporter from Plasmodium falciparum, a novel target for anti-malarial chemotherapy. Biochem J 349:67–75

    Article  PubMed  CAS  Google Scholar 

  82. Pasvol G, Wilson RJ, Smalley ME, Brown J (1978) Separation of viable schizont-infected red cells of Plasmodium falciparum from human blood. Ann Trop Med Parasitol 72:87–88

    PubMed  CAS  Google Scholar 

  83. Penny JI, Hall ST, Woodrow CJ, Cowan GM, Gero AM, Krishna S (1998) Expression of substrate-specific transporters encoded by Plasmodium falciparum in Xenopus laevis oocytes. Mol Biochem Parasitol 93:81–89

    Article  PubMed  CAS  Google Scholar 

  84. Prasad PD, Wang H, Huang W, Fei YJ, Leibach FH, Devoe LD, Ganapathy V (1999) Molecular and functional characterization of the intestinal Na+-dependent multivitamin transporter. Arch Biochem Biophys 366:95–106

    Article  PubMed  CAS  Google Scholar 

  85. Prasad PD, Srinivas SR, Wang H, Leibach FH, Devoe LD, Ganapathy V (2000) Electrogenic nature of rat sodium-dependent multivitamin transport. Biochem Biophys Res Commun 270:836–840

    Article  PubMed  CAS  Google Scholar 

  86. Rager N, Mamoun CB, Carter NS, Goldberg DE, Ullman B (2001) Localization of the Plasmodium falciparum PfNT1 nucleoside transporter to the parasite plasma membrane. J Biol Chem 276:41095–41099

    Article  PubMed  CAS  Google Scholar 

  87. Rasoloson D, Shi L, Chong CR, Kafsack BF, Sullivan DJ (2004) Copper pathways in Plasmodium falciparum infected erythrocytes indicate an efflux role for the copper P-ATPase. Biochem J 381:803–811

    PubMed  CAS  Google Scholar 

  88. Raymond M, Gros P, Whiteway M, Thomas DY (1992) Functional complementation of yeast ste6 by a mammalian multidrug resistance mdr gene. Science 256:232–234

    PubMed  CAS  Google Scholar 

  89. Reed MB, Saliba KJ, Caruana SR, Kirk, K, Cowman AF (2000) Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403:906–909

    PubMed  CAS  Google Scholar 

  90. Rothman JE (1987) Protein sorting by selective retention in the endoplasmic reticulum and Golgi stack. Cell 50:521–522

    Article  PubMed  CAS  Google Scholar 

  91. Saier MH Jr (2000) A functional-phylogenetic classiffication system for transmembrane solute transporters. Microbiol Mol Biol Rev 64:354–411

    PubMed  CAS  Google Scholar 

  92. Saliba KJ, Folb PI, Smith PJ (1998) Role for the Plasmodium falciparum digestive vacuole in chloroquine resistance. Biochem Pharmacol 56:313–320

    Article  PubMed  CAS  Google Scholar 

  93. Saliba KJ, Horner HA, Kirk K (1998) Transport and metabolism of the essential vitamin pantothenic acid in human erythrocytes infected with the malaria parasite Plasmodium falciparum. J Biol Chem 273:10190–10195

    Article  PubMed  CAS  Google Scholar 

  94. Saliba KJ, Kirk K (1998) Uptake of an antiplasmodial protease inhibitor into Plasmodium falciparum-infected human erythrocytes via a parasite-induced pathway. Mol Biochem Parasitol 94:297–301

    Article  PubMed  CAS  Google Scholar 

  95. Saliba KJ, Kirk K (1999) pH regulation in the intracellular malaria parasite, Plasmodium falciparum: H+ extrusion via a V-type H+-ATPase. J Biol Chem 274:33213–33219

    Article  PubMed  CAS  Google Scholar 

  96. Saliba KJ, Kirk K (2001) H+-coupled pantothenate transport in the intracellular malaria parasite. J Biol Chem 276:18115–18121

    Article  PubMed  CAS  Google Scholar 

  97. Saliba KJ, Allen RJW, Zissis S, Bray PG, Ward SA, Kirk K (2003) Acidification of the malaria parasite’s digestive vacuole by a H+-ATPase and a H+-pyrophosphatase. J Biol Chem 278:5605–5612

    Article  PubMed  CAS  Google Scholar 

  98. Saliba KJ, Krishna S, Kirk K (2004) Inhibition of hexose transport and abrogation of pH homeostasis in the intraerythrocytic malaria parasite by an O-3-hexose derivative. FEBS Lett 16:93–96

    Google Scholar 

  99. Santiago TC, Zufferey R, Mehra RS, Coleman RA, Mamoun CB (2004) The Plasmodium falciparum PfGatp is an endoplasmic reticulum membrane protein important for the initial step of malarial glycerolipid synthesis. J Biol Chem 279:9222–9232

    Article  PubMed  CAS  Google Scholar 

  100. Sidhu AB, Verdier-Pinard D, Fidock DA (2002) Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by PfCRT mutations. Science 298:210–213

    Article  PubMed  CAS  Google Scholar 

  101. Spiller DG, Bray PG, Hughes RH, Ward SA, White MR (2002) The pH of the Plasmodium falciparum digestive vacuole: holy grail or dead-end trail? Trends Parasitol 18:441–444

    Article  PubMed  CAS  Google Scholar 

  102. Staines HM, Chang W, Ellory JC, Tiffert T, Kirk K, Lew VL (1999) Passive Ca2+ transport and Ca2+-dependent K+ transport in Plasmodium falciparum-infected red cells. J Membr Biol 172:13–24

    Article  PubMed  CAS  Google Scholar 

  103. Staines HM, Rae C, Kirk K (2000) Increased permeability of the malaria-infected erythrocyte to organic cations. Biochim Biophys Acta 1463:88–98

    PubMed  CAS  Google Scholar 

  104. Staines HM, Ellory JC, Kirk K (2001) Perturbation of the pump-leak balance for Na+ and K+ in malaria-infected erythrocytes. Am J Physiol 280:C1576–C1587

    CAS  Google Scholar 

  105. Staines HM, Powell T, Ellory JC, Egee S, Lapaix F, Decherf G, Thomas SL, Duranton C, Lang F, Huber SM (2003) Modulation of whole-cell currents in Plasmodium falciparum-infected human red blood cells by holding potential and serum. J Physiol 552:177–183

    Article  PubMed  CAS  Google Scholar 

  106. Staines HM, Powell T, Thomas SL, Ellory JC (2004) Plasmodium falciparum-induced channels. Int J Parasitol 34:665–673

    PubMed  CAS  Google Scholar 

  107. Stead AM, Bray PG, Edwards IG, DeKoning HP, Elford BC, Stocks PA, Ward SA (2001) Diamidine compounds: selective uptake and targeting in Plasmodium falciparum. Mol Pharmacol 59:1298–1306

    PubMed  CAS  Google Scholar 

  108. Stolz J, Sauer N (1999) The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H+-pantothenate symporter. J Biol Chem 274:18747–18752

    PubMed  CAS  Google Scholar 

  109. Stolz J, Caspari T, Carr AM, Sauer N (2004) Cell division defects of Schizosaccharomyces pombe liz1-mutants are caused by defects in pantothenate uptake. Eukaryot Cell 3:406–412

    Article  PubMed  CAS  Google Scholar 

  110. Tan W, Tai E, Chow LMC (2003) Expression and characterisation of PfCRT in yeast. Exp Parasitol 105:34

    Google Scholar 

  111. Teasdale RD, Jackson MR (1996) Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the golgi apparatus. Ann Rev Cell Dev Biol. 12:27–54

    CAS  Google Scholar 

  112. Thomas SL, Lew VL (2004) Plasmodium falciparum and the permeation pathway of the host red blood cell. Trends Parasitol 20:122–125

    PubMed  CAS  Google Scholar 

  113. Tran CV, Saier MH Jr (2004) The principal chloroquine resistance protein of Plasmodium falciparum is a member of the drug/metabolite transporter superfamily. Microbiology 150:1–3

    Article  PubMed  CAS  Google Scholar 

  114. Ullu E, Tschudi C, Chakraborty T (2004) RNA interference in protozoan parasites. Cell Microbiol 6:509–519

    Article  PubMed  CAS  Google Scholar 

  115. Verloo P, Kocken CH, Van der Wel A, Tilly BC, Hogema BM, Sinaasappel M, Thomas AW, De Jonge HR (2004) Plasmodium falciparum-activated chloride channels are defective in erythrocytes from cystic fibrosis patients. J Biol Chem 279:10316–10322

    PubMed  CAS  Google Scholar 

  116. Volkman SK, Cowman AF, Wirth DF (1995) Functional complementation of the ste6 gene of Saccharomyces cerevisiae with the PfMDR1 gene of Plasmodium falciparum. Proc Natl Acad Sci. USA 92:8921–8925

    PubMed  CAS  Google Scholar 

  117. Wagner MA, Andemariam B, Desai SA (2003) A two-compartment model of osmotic lysis in Plasmodium falciparum-infected erythrocytes. Biophys J 84:116–123

    Article  PubMed  CAS  Google Scholar 

  118. Waller KL, Muhle RA, Ursos LM, Horrocks P, Verdier-Pinard D, Sidhu AB, Fujioka H, Roepe PD, Fidock DA (2003) Chloroquine resistance modulated in vitro by expression levels of the Plasmodium falciparum chloroquine resistance transporter. J Biol Chem 278:33593–33601

    Article  PubMed  CAS  Google Scholar 

  119. Waller RF, Keeling PJ, Donald RG, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos DS, McFadden GI (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad SciUSA 95:12352–12357

    CAS  Google Scholar 

  120. Wang H, Huang W, Fei YJ, Xia H, Yang-Feng TL, Leibach FH, Devoe LD, Ganapathy V, Prasad PD (1999) Human placental Na+-dependent multivitamin transporter. Cloning, functional expression, gene structure, and chromosomal localization. J Biol Chem 274:14875–14883

    PubMed  CAS  Google Scholar 

  121. Weber JH, Vishnyakov A, Hambach K, Schultz A, Schultz JE, Linder JU (2004) Adenylyl cyclases from Plasmodium, Paramecium and Tetrahymena are novel ion channel/enzyme fusion proteins. Cell Signal 16:115–125

    Article  PubMed  CAS  Google Scholar 

  122. Wilson CM, Serrano AE, Wasley A, Bogenschutz MP, Shankar AH, Wirth DF (1989) Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum. Science 244:1184–1186

    PubMed  CAS  Google Scholar 

  123. Withers-Martinez C, Carpenter EP, Hackett F, Ely B, Sajid M, Grainger M, Blackman MJ (1999) PCR-based gene synthesis as an efficient approach for expression of the A+T-rich malaria genome. Protein Eng 12:1113–1120

    PubMed  CAS  Google Scholar 

  124. Woodrow CJ, Penny JI, Krishna S (1999) Intraerythrocytic Plasmodium falciparum expresses a high affinity facilitative hexose transporter. J Biol Chem 274:7272–7277

    Article  PubMed  CAS  Google Scholar 

  125. Woodrow CJ, Burchmore RJ, Krishna S (2000) Hexose permeation pathways in Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci USA 97:9931–9936

    Article  PubMed  CAS  Google Scholar 

  126. Wunsch S, Sanchez CP, Gekle M, Grosse-Wortmann L, Wiesner J, Lanzer M (1998) Differential stimulation of the Na+/H+ exchanger determines chloroquine uptake in Plasmodium falciparum. J Cell Biol 140:335–345

    Article  PubMed  CAS  Google Scholar 

  127. Yadava A, Ockenhouse CF (2003) Effect of codon optimization on expression levels of a functionally folded malaria vaccine candidate in prokaryotic and eukaryotic expression systems. Infect Immun 71:4961–4969

    Article  PubMed  CAS  Google Scholar 

  128. Zhang H, Howard EM, Roepe PD (2002) Analysis of the antimalarial drug resistance protein PfCRT expressed in yeast. J Biol Chem 277:49767–49775

    PubMed  CAS  Google Scholar 

  129. Zuegge J, Ralph S, Schmuker M, McFadden GI, Schneider G (2001) Deciphering apicoplast targeting signals—feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene 280:19–26

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirk, K., Martin, R.E., Bröer, S., Howitt, S.M., Saliba, K.J. (2005). Plasmodium Permeomics: Membrane Transport Proteins in the Malaria Parasite. In: Compans, R.W., et al. Malaria: Drugs, Disease and Post-genomic Biology. Current Topics in Microbiology and Immunology, vol 295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29088-5_13

Download citation

Publish with us

Policies and ethics