Skip to main content

Determination of Ultra-Trace Levels of Palladium in Environmental Samples by Graphite Furnace Atomic Spectrometry Techniques

  • Chapter
Palladium Emissions in the Environment

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Begerow J, Turfeld M, Dunemann L (1997a) Determination of physiological palladium, platinum, iridium and gold levels in human blood using double focusing magnetic sector field inductively coupled plasma mass spectrometry. J Anal At Spectrom 12: 1095–1098.

    Article  CAS  Google Scholar 

  • Begerow J, Turfeld M, Dunemann L (1997b) Determination of physiological noble metals in human urine using liquid-liquid extraction and Zeeman electrothermal atomic absorption spectrometry. Anal Chim Acta 340: 277–283.

    Article  CAS  Google Scholar 

  • Bencs L, Ravindra K, Van Grieken R (2003) Methods for the determination of platinum group elements originating from the abrasion of automotive catalytic converters. Spectrochim Acta Part B 58: 1723–1755.

    Google Scholar 

  • Boch K, Schuster M, Russe G, Schwarzer M (2002) Microwave-assisted digestion procedure for the determination of palladium in road dust. Anal Chim Acta 459: 257–265.

    Article  CAS  Google Scholar 

  • Brzezicka M, Szmyd E (1999) Investigation of the influence of interfering elements on the determination of palladium in copper ores by graphite furnace atomic absorption spectrometry. Spectrochim Acta Part B 54: 883–889.

    Google Scholar 

  • Byrne JP, Grégoire DC, Benyounes ME, Chakrabarti CL (1997) Vaporization and atomization of the platinum group elements in the graphite furnace investi gated by electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim Acta Part B 52: 1575–1586.

    Google Scholar 

  • Chwastowska J, Skwara W, Sterliñska E, Pszonicki L (2004) Determination of platinum and palladium in environmental samples by graphite furnace atomic absortion spectrometry after separation on dithizone sorbent. Talanta 64: 224–229.

    Article  CAS  Google Scholar 

  • Da Silva MAM, Frescura VLA, Curtius AJ (2001) Determination of noble metals in biological samples by electrothermal vaporization inductively coupled plasma mass spectrometry following cloud point extraction. Spectrochim Acta Part B 56: 1941–1949.

    Google Scholar 

  • Dziwulska U, Bajguz A, Godlewska-Żyłkiewicz B (2004) The use of algae Chlorella vulgaris immobilized on Cellex-T support for separation/preconcentration of trace amounts of platinum and palladium before GFAAS determination. Anal Lett 37: 2189–2203.

    Article  CAS  Google Scholar 

  • Fan Z, Jiang Z, Yang F, Hu B (2004) Determination of platinum, palladium and rhodium in biological and environmental samples by low temperature electrothermal vaporization inductively coupled plasma atomic emission spectrometry with diethyldithiocarbamate as chemical modifier. Anal Chim Acta 510: 45–51.

    Article  CAS  Google Scholar 

  • Farago ME, Parsons PJ (1982) Determination of platinum, palladium and rhodium by atomic-absorption spectroscopy with electrothermal atomisation. Analyst 107: 1218–1228.

    Article  CAS  Google Scholar 

  • Godlewska-Żyłkiewicz B (2002) Hazards of errors in the palladium storage in determination by GFAAS. Anal Bioanal Chem 372: 593–596.

    Google Scholar 

  • Godlewska-Żyłkiewicz B (2004) Preconcentration and separation procedures for the spectrochemical determination of platinum and palladium. Microchim Acta 147: 189–210.

    Google Scholar 

  • Godlewska-Żyłkiewicz B, Zaleska M (2002) Preconcentration of palladium in a flow-through cell for determination by graphite furnace atomic absorption spectrometry. Anal Chim Acta 462: 305–312.

    Google Scholar 

  • Godlewska-Żyłkiewicz B, Leśniewska B, Gasiewska U, Hulanicki A (2000) Ionexchange preconcentration and separation of trace amounts of platinum and palladium. Anal Lett 33: 2805–2820.

    Google Scholar 

  • Grégoire DC (1988) Determination of platinum, palladium, ruthenium and iridium geological materials by inductively coupled plasma mass spectrometry with sample introduction by electrothermal vaporization. J Anal At Spectrom 3: 309–314.

    Google Scholar 

  • Heinrich E, Schmidt G, Kratz KL (1996) Determination of platinum-group elements (PGE) from catalytic converters in soils by means of docimasy and INAA. Fresenius J Anal Chem 354: 883–885.

    CAS  Google Scholar 

  • Johnson Matthey, Precious Metal Division, Johnson Matthey Publishing Company, London, UK, 2004, (webpage: http://www.matthey.com/media/publications.htm)

    Google Scholar 

  • Kántor T (1988) Interpreting some analytical characteristics of thermal dispersion methods used for sample introduction in atomic spectrometry. Spectrochim Acta Part B 43: 1299–1320.

    Google Scholar 

  • Kántor T (2001) Electrothermal vaporization and laser ablation sample introduction for flame and plasma spectrometric analysis of solid and solution samples. Spectrochim Acta Part B 56: 1523–1563.

    Google Scholar 

  • Komárek J, Krásenský P, Balcar J, Řehulka P (1999) Determination of palladium and platinum by electrothermal atomic absorption spectrometry after deposition on a graphite tube. Spectrochim Acta Part B 54: 739–743.

    Google Scholar 

  • Kubrakova IV, Kudinova TF, Kuz’min NM, Kovalev IA, Tsysin GI, Zolotov Yu A (1996) Determination of low levels of platinum group metals: new solutions. Anal Chim Acta 334: 167–175.

    Article  CAS  Google Scholar 

  • Lee ML, Beinrohr E, Tschöpel P, Tölg G (1993) Preconcentration of palladium, platinum and rhodium by online sorbent extraction for graphite-furnace atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 272: 193–203.

    Article  CAS  Google Scholar 

  • Limbeck A, Rendl J, Puxbaum H (2003) ETAAS determination of palladium in environmental samples with on-line preconcentration and matrix separation. J Anal At Spectrom 18: 161–165.

    Article  CAS  Google Scholar 

  • Limbeck A, Rendl J, Heimburger G, Kranabetter A, Puxbaum H (2004) Seasonal variation of palladium, elemental carbon and aerosol mass concentrations in airborne particulate matter. Atmos Environ 38: 1979–1987.

    Article  CAS  Google Scholar 

  • Lüdke C, Hoffmann E, Skole J, Artelt S (1996) Particle analysis of car exhaust by ETV-ICP-MS. Fresenius J Anal Chem 355: 261–263.

    Google Scholar 

  • Matusiewicz H, Lesinski M (2002) Electrodeposition sample introduction for ultra trace determination of platinum group elements (Pt, Pd, Rh, Ru) in road dust by electrothermal atomic absorption spectrometry. Int J Environ Anal Chem 82: 207–223.

    Article  CAS  Google Scholar 

  • McLeod CW, Routh MW, Tikkanen MW, Introduction of solids into plasmas. In: Montaser A, Golightly DW (editors.) Inductively Coupled Plasmas in Analytical Atomic Spectrometry, Second edition, VCH Publishers, New York, 1992, pp. 721–780.

    Google Scholar 

  • Müller M, Heumann KG (2000) Isotope dilution inductively coupled plasma quadrupole mass spectrometry in connection with a chromatographic separation for ultra trace determinations of platinum group elements (Pt, Pd, Ru, Ir) in environmental samples. Fresenius J Anal Chem 368: 109–115.

    Google Scholar 

  • Patel KS, Sharma PC, Hoffmann P (2000) Graphite furnace atomic absorption spectrometric determination of palladium in soil. Fresenius J Anal Chem 367: 738–741.

    Article  CAS  Google Scholar 

  • Radziuk B, Rödel G, Stenz H, Becker-Ross H, Florek S (1995a) Spectrometer system for simultaneous multielement electrothermal atomic absorption spectrometry using line sources and Zeeman-effect background correction. J Anal At Spectrom 10: 127–136.

    CAS  Google Scholar 

  • Radziuk B, Rödel G, Zeiher M, Mizuno S, Yamamoto K (1995b) Solid-state detector for simultaneous multielement electrothermal atomic absorption spectrometry with Zeeman-effect background correction. J Anal At Spectrom 10: 415–422.

    CAS  Google Scholar 

  • Ravindra K, Bencs L, Van Grieken R (2004) Platinum group elements in the environment and their health risk. Sci Total Environ 318: 1–43.

    Article  CAS  Google Scholar 

  • Schuster M, Schwarzer M (1996) Selective determination of palladium by on-line column preconcentration and graphite furnace atomic absorption spectrometry. Anal Chim Acta 328: 1–11.

    Article  CAS  Google Scholar 

  • Schuster M, Schwarzer M (1998) A new on-line column separation and preconcentration system for the selective determination of trace and ultratrace levels of palladium. At Spectrosc 19: 121–128.

    CAS  Google Scholar 

  • Schuster M, Schwarzer M, Risse G, Determination of palladium in environmental samples. In: Zereini F, Alt F, editors. Anthropogenic Platinum-Group Element Emissions. Their Impact on Man and Environment. Springer-Verlag, Berlin, Heidelberg, 2000, pp. 173–182.

    Google Scholar 

  • Slavin W, Manning DC, Carnrick GR (1981) The stabilized temperature platform furnace. At Spectrosc 2: 137–145.

    CAS  Google Scholar 

  • Sures B, Zimmermann S, Messerschmidt J, von Bohlen A, Alt F (2001) First report on the uptake of automobile catalyst emitted palladium by European eels (Anguilla anguilla) following experimental exposure to road dust. Environ Pollut 113: 341–345.

    Article  CAS  Google Scholar 

  • Sures B, Thielen F, Zimmermann S (2002a) Study on the bioavailability of catalytic converter emitted platinum group elements (PGE) in the aquatic fauna in special reference to Pd. UWSF — Z Umweltchem Ökotox 14: 30–36 (in German).

    CAS  Google Scholar 

  • Sures B, Zimmermann S, Messerschmidt J, Von Bohlen A (2002b) Relevance and analysis of traffic related platinum group metals (Pt, Pd, Rh) in the aquatic biosphere with emphasis on palladium. Ecotoxicol 11: 385–392.

    CAS  Google Scholar 

  • Tilch J, Schuster M, Schwarzer M (2000) Determination of palladium in airborne particulate matter in a German city. Fresenius J Anal Chem 367: 450–453.

    Article  CAS  Google Scholar 

  • Tokalioglu Ş, Oymak T, Kartal Ş (2004) Determination of palladium in various samples by atomic absorption spectrometry after preconcentration with dimethylglyoxime on silica gel. Anal Chim Acta 511: 255–260.

    Article  CAS  Google Scholar 

  • Urban H, Zereini F, Skerstupp B, Tarkian M (1995) The determination of platinum group-elements (PGE) by nickel sulfide fire-assay: Coexisting PGE-phases in the nickel sulfide button. Fresenius J Anal Chem 352: 537–543.

    Article  CAS  Google Scholar 

  • Van Ketel WG, Niebber C (1981) Allergy to palladium in dental alloys. Contact Dermatitis 7: 331.

    Google Scholar 

  • Welz B, Sperling M, Atomic Absorption Spectrometry, 3rd edition, Wiley-VCH, Weinheim, 1999.

    Google Scholar 

  • Wu YW, Jiang ZC, Hu B, Duan JK (2004a) Electrothermal vaporization inductively coupled plasma atomic emission spectrometry determination of gold, palladium, and platinum using chelating resin YPA4 as both extractant and chemical modifier. Talanta 63: 585–592.

    Article  CAS  Google Scholar 

  • Wu YW, Jiang ZC, Hu B, Xiong CM, Li YJ (2004b) In-situ separation and determination of palladium from platinum based on different vaporization temperatures by electrothermal vaporization inductively coupled plasma optical emission spectrometry with YPA4 resin acting both as adsorption material and chemical modifier. Microchim Acta 148: 279–284.

    Article  CAS  Google Scholar 

  • Zereini F, Skerstupp B, Urban H (1994) Comparison between the use of sodium and lithium tetraborate in platinum-group element determination by nickel sulfide fire-assay. Geostand Newslett 18: 105–109.

    CAS  Google Scholar 

  • Zereini F, Alt F, editors. Anthropogenic Platinum-Group Element Emissions. Their Impact on Man and Environment. Springer-Verlag, Berlin, Heidelberg, 2000.

    Google Scholar 

  • Zimmermann S, Messerschmidt J, Von Bohlen A, Sures B (2003) Determination of Pt, Pd and Rh in biological samples by electrothermal atomic absorption spectrometry as compared with adsorptive cathodic stripping voltammetry and total-reflection X-ray fluorescence analysis. Anal Chim Acta 498: 93–104.

    Article  CAS  Google Scholar 

  • Zischka M, Wegscheider W, Reliability of and measurement uncertainty for the determination of Au, Pd, Pt and Rh by ICP-MS in environmentally relevant samples. In: Zereini F, Alt F, editors. Anthropogenic Platinum-Group Element Emissions. Their Impact on Man and Environment. Springer-Verlag, Berlin, Heidelberg, 2000, pp. 201–214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bencs, L., Ravindra, K., Van Grieken, R. (2006). Determination of Ultra-Trace Levels of Palladium in Environmental Samples by Graphite Furnace Atomic Spectrometry Techniques. In: Zereini, F., Alt, F. (eds) Palladium Emissions in the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29220-9_13

Download citation

Publish with us

Policies and ethics