Skip to main content

Cardiac Na+ Channels as Therapeutic Targets for Antiarrhythmic Agents

  • Chapter
Basis and Treatment of Cardiac Arrhythmias

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 171))

Abstract

There are many factors that influence drug block of voltage-gated Na+ channels (VGSC). Pharmacological agents vary in conformation, charge, and affinity. Different drugs have variable affinities to VGSC isoforms, and drug efficacy is affected by implicit tissue properties such as resting potential, action potential morphology, and action potential frequency. The presence of polymorphisms and mutations in the drug target can also influence drug outcomes. While VGSCs have been therapeutic targets in the management of cardiac arrhythmias, their potential has been largely overshadowed by toxic side effects. Nonetheless, many VGSC blockers exhibit inherent voltage- and use-dependent properties of channel block that have recently proven useful for the diagnosis and treatment of genetic arrhythmias that arise from defects in Na+ channels and can underlie idiopathic clinical syndromes. These defective channels suggest themselves as prime targets of disease and perhaps even mutation specific pharmacological interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abriel H, Wehrens XHT, Benhorin J, Kerem B, Kass RS (2000) Molecular pharmacology of the sodium channel mutation D1790G linked to the long-QT syndrome. Circulation 102:921–925

    CAS  PubMed  Google Scholar 

  • Abriel H, Cabo C, Wehrens XHT, Rivolta I, Motoike HK, Memmi M, Napolitano C, Priori SG, Kass RS (2001) Novel arrhythmogenic mechanism revealed by a Long-QT syndrome mutation in the cardiac Na+ channel. Circ Res 88:740–745

    Article  CAS  PubMed  Google Scholar 

  • Ahern CA, Horn R (2004) Stirring up controversy with a voltage sensor paddle. Trends Neurosci 27:303–307

    Article  CAS  PubMed  Google Scholar 

  • Auld VJ, Goldin AL, Krafte DS, Catterall WA, Lester HA, Davidson N, Dunn RJ (1990) A neutral amino-acid change in segment-IIS4 dramatically alters the gating properties of the voltage-dependent sodium-channel. Proc Natl Acad Sci USA 87:323–327

    Article  CAS  PubMed  Google Scholar 

  • Baruscotti M, DiFrancesco D, Robinson RB (1996) A TTX-sensitive inward sodium current contributes to spontaneous activity in newborn rabbit sino-atrial node cells. J Physiol (Lond) 492:21–30

    CAS  PubMed  Google Scholar 

  • Baruscotti M, Westenbroek R, Catterall WA, DiFrancesco D, Robinson RB (1997) The newborn rabbit sino-atrial node expresses a neuronal type I-like Na+ channel. J Physiol (Lond) 498:641–648

    CAS  PubMed  Google Scholar 

  • Baruscotti M, DiFrancesco D, Robinson RB(2001) Single-channel properties of the sinoatrial node Na+ current in the newborn rabbit. Pflugers Arch 442:192–196

    Article  CAS  PubMed  Google Scholar 

  • Brugada R, Brugada J, Antzelevitch C, Kirsch GE, Potenza D, Towbin JA, Brugada P (2000) Sodium channel blockers identify risk for sudden death in patients with ST-Segment elevation and right bundle branch block but structurally normal hearts. Circulation 101:510–515

    CAS  PubMed  Google Scholar 

  • Carmeliet E, Fozzard HA, Hiraoka M, Janse MJ, Ogawa S, Roden DM, Rosen MR, Rudy Y, Schwartz PJ, Matteo PS, Antzelevitch C, Boyden PA, Catterall WA, Fishman GI, George AL, Izumo S, Jalife J, January CT, Kleber AG, Marban E, Marks AR, Spooner PM, Waldo AL, Weiss JM, Zipes DLP (2001) New approaches to antiarrhythmic therapy, part I— emerging therapeutic applications of the cell biology of cardiac arrhythmias. Circulation 104:2865–2873

    Article  Google Scholar 

  • Cohen SA (1996) Immunocytochemical localization of rH1 sodium channel in adult rat heart atria and ventricle: presence in terminal intercalated disks. Circulation 94:3083–3086

    CAS  PubMed  Google Scholar 

  • Cormier JW, Rivolta I, Tateyama M, Yang AS, Kass RS (2002) Secondary structure of the human cardiac Na+ channel C terminus—Evidence for a role of helical structures in modulation of channel inactivation. J Biol Chem 277:9233–9241

    Article  CAS  PubMed  Google Scholar 

  • Fenichel RR, Malik M, Antzelevitch C, Sanguinetti M, Roden DM, Priori SG, Ruskin JN, Lipicky RJ, Cantilena LR (2004) Drug-induced torsades de pointes and implications for drug development. J Cardiovasc Electrophysiol 15:475–495

    Article  PubMed  Google Scholar 

  • Goldin AL (2001) Resurgence of sodium channel research. Annu Rev Physiol 63:871–894

    Article  CAS  PubMed  Google Scholar 

  • Goldin AL (2002) Evolution of voltage-gated Na+ channels. J Exp Biol 205:575–584

    CAS  PubMed  Google Scholar 

  • Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG, Wood JN, Catterall WA (2000) Nomenclature of voltage-gated sodium channels. Neuron 28:365–368

    Article  CAS  PubMed  Google Scholar 

  • Grant AO, Chandra R, Keller C, Carboni M, Starmer CF (2000) Block of wild-type and inactivation-deficient cardiac sodium channels IFM/QQQ stably expressed in mammalian cells. Biophys J 79:3019–3035

    CAS  PubMed  Google Scholar 

  • Harrison DC (1985) A rational scientific basis for subclassification of antiarrhythmic drugs. Trans Am Clin Climatol Assoc 97:43–52

    CAS  PubMed  Google Scholar 

  • Hille B (1977) Local-anesthetics—hydrophilic and hydrophobic pathways for drug-receptor reaction. J Gen Physiol 69:497–515

    Article  CAS  PubMed  Google Scholar 

  • Honjo H, Boyett MR, Kodama I, Toyama J (1996) Correlation between electrical activity and the size of rabbit sino-atrial node cells. J Physiol (Lond) 496:795–808

    CAS  PubMed  Google Scholar 

  • Kambouris NG, Nuss HB, Johns DC, Marban E, Tomaselli GF, Balser JR (2000) A revised view of cardiac sodium channel “blockade” in the long-QT syndrome. J Clin Invest 105:1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Kawagoe H, Yamaoka K, Kinoshita E, Fujimoto Y, Maejima H, Yuki T, Seyama I (2002) Molecular basis for exaggerated sensitivity to mexiletine in the cardiac isoform of the fast Na channel. FEBS Lett 513:235–241

    Article  CAS  PubMed  Google Scholar 

  • Kodama I, Boyett MR, Suzuki R, Honjo H, Toyama J (1996) Regional differences in the response of the isolated sino-atrial node of the rabbit to vagal stimulation. J Physiol (Lond) 495:785–801

    CAS  PubMed  Google Scholar 

  • Kodama I, Nikmaram MR, Boyett MR, Suzuki R, Honjo H, Owen JM (1997) Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node. Am J Physiol Heart Circ Physiol 41:H2793–H2806

    Google Scholar 

  • Kontis KJ, Rounaghi A, Goldin AL (1997) Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domains. J Gen Physiol 110:391–401

    Article  CAS  PubMed  Google Scholar 

  • Kucera JP, Rohr S, Rudy Y (2002) Localization of sodium channels in intercalated disks modulates cardiac conduction. Circ Res 91:1176–1182

    Article  CAS  PubMed  Google Scholar 

  • Lee JT, Kroemer HK, Silberstein DJ, Funck-Brentano C, Lineberry MD, Wood AJ, Roden DM, Woosley RL (1990) The role of genetically determined polymorphic drug metabolism in the beta-blockade produced by propafenone. N Engl J Med 322:1764–1768

    CAS  PubMed  Google Scholar 

  • Lerche H, Jurkat-Rott K, Lehmann-Horn F (2001) Ion channels and epilepsy. Am J Med Genet 106:146–159

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Atkins J, Kass R (2003) Common molecular determinants of flecainide and lidocaine block of heart Na(+) channels: evidence from experiments with neutral and quaternary flecainide analogues. J Gen Physiol 121:199–214

    Article  CAS  PubMed  Google Scholar 

  • Liu HJ, Tateyama M, Clancy CE, Abriel H, Kass RS (2002) Channel openings are necessary but not sufficient for use-dependent block of cardiac Na+ channels by flecainide: evidence from the analysis of disease-linked mutations. J Gen Physiol 120:39–51

    Article  CAS  PubMed  Google Scholar 

  • Lossin C, Wang DW, Rhodes TH, Vanoye CG, George AL (2002) Molecular basis of an inherited epilepsy. Neuron 34:877–884

    Article  CAS  PubMed  Google Scholar 

  • Maier SKG, Westenbroek RE, Schenkman KA, Feigl EO, Scheuer T, Catterall WA (2002) An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc Natl Acad Sci USA 99:4073–4078

    Article  CAS  PubMed  Google Scholar 

  • Makielski JC, Limberis JT, Chang SY, Fan Z, Kyle JW (1996) Coexpression of beta 1 with cardiac sodium channel alpha subunits in oocytes decreases lidocaine block. Mol Pharmacol 49:30–39

    CAS  PubMed  Google Scholar 

  • Makielski JC, Limberis J, Fan Z, Kyle JW (1999) Intrinsic lidocaine affinity for Na channels expressed in Xenopus oocytes depends on alpha (hH1 vs. rSkM1) and beta 1 subunits. Cardiovasc Res 42:503–509

    Article  CAS  PubMed  Google Scholar 

  • Malhotra JD, Chen CL, Rivolta I, Abriel H, Malhotra R, Mattei LN, Brosius FC, Kass RS, Isom LL (2001) Characterization of sodium channel alpha-and beta-subunits in rat and mouse cardiac myocytes. Circulation 103:1303–1310

    CAS  PubMed  Google Scholar 

  • Mantegazza M, Yu FH, Catterall WA, Scheuer T (2001) Role of the C-terminal domain in inactivation of brain and cardiac sodium channels. Proc Natl Acad Sci USA 98:15348–15353

    Article  CAS  PubMed  Google Scholar 

  • Meisler MH, Kearney JA, Sprunger LK, MacDonald BT, Buchner DA, Escayg A (2002) Mutations of voltage-gated sodium channels in movement disorders and epilepsy. Novartis Found Symp 241:72–86

    Article  CAS  PubMed  Google Scholar 

  • Meyer UA, Zanger UM, Skoda RC, Grant D, Blum M (1990) Genetic polymorphisms of drug metabolism. Prog Liver Dis 9:307–323

    CAS  PubMed  Google Scholar 

  • Muramatsu H, Zou AR, Berkowitz GA, Nathan RD (1996) Characterization of a TTX-sensitive Na+ current in pacemaker cells isolated from rabbit sinoatrial node. Am J Physiol Heart Circ Physiol 39:H2108–H2119

    Google Scholar 

  • Nagatomo T, January CT, Makielski JC (2000) Preferential block of late sodium current in the LQT3 DeltaKPQ mutant by the class I(C) antiarrhythmic flecainide. Mol Pharmacol 57:101–107

    CAS  PubMed  Google Scholar 

  • Nau C, Wang SY, Wang GK (2003) Point mutations at L1280 in Nav1.4 channel D3-S6 modulate binding affinity and stereoselectivity of bupivacaine enantiomers. Mol Pharmacol 63:1398–1406

    Article  CAS  PubMed  Google Scholar 

  • Ong BH, Tomaselli GF, Balser JR (2000) A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence. J Gen Physiol 116:653–661

    Article  CAS  PubMed  Google Scholar 

  • Priori SG, Napolitano C, Schwartz PJ, Bloise R, Crotti L, Ronchetti E (2000) The thin border between long QT and Brugada syndromes: the role of flecainide challenge. Circulation 102:676

    Google Scholar 

  • Qu Y, Isom LL, Westenbroek RE, Rogers JC, Tanada TN, McCormick KA, Scheuer T, Catterall WA (1995) Modulation of cardiac Na+ channel expression in Xenopus oocytes by beta 1 subunits. J Biol Chem 270:25696–25701

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale DS, Mcphee JC, Scheuer T, Catterall WA (1994) Molecular determinants of state-dependent block of Na+ channels by local-anesthetics. Science 265:1724–1728

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1996) Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci USA 93:9270–9275

    Article  CAS  PubMed  Google Scholar 

  • Rajamani S, Anderson CL, Anson BD, January CT (2002) Pharmacological rescue of human K(+) channel long-QT2 mutations: human ether-a-go-go-related gene rescue without block. Circulation 105:2830–2835

    Article  CAS  PubMed  Google Scholar 

  • Roden D (1990) Antiarrhythmic drugs. In: Hardman JG, et al (eds) Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York, pp 839–974

    Google Scholar 

  • Roden D (2001) Principles in pharmacogenomics. Epilepsia 42:44–48

    Article  PubMed  Google Scholar 

  • Roden DM (2000) Antiarrhythmic drugs: from mechanisms to clinical practice. Heart 84:339–346

    Article  CAS  PubMed  Google Scholar 

  • Roden DM, George AL (2002) The genetic basis of variability in drug responses. Nat Rev Drug Discov 1:37–44

    Article  CAS  PubMed  Google Scholar 

  • Rosen MR, Wit AL (1983) Electropharmacology of anti-arrhythmic drugs. Am Heart J 106:829–839

    Article  CAS  PubMed  Google Scholar 

  • Rosen MR, Wit AL (1987) Arrhythmogenic actions of antiarrhythmic drugs. Am J Cardiol 59:E10–E18

    Article  Google Scholar 

  • Rosen MR, Hoffman BF, Wit AL (1975) Electrophysiology and pharmacology of cardiac-arrhythmias. 5. Cardiac antiarrhythmic effects of lidocaine. Am Heart J 89:526–536

    Article  CAS  PubMed  Google Scholar 

  • Ruskin JN (1989) The Cardiac Arrhythmia Suppression Trial (CAST). N Engl J Med 321:386–388

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Makita N, Sunami A, Sakurada H, Shirai N, Yokoi H, Kimura A, Tohse N, Hiraoka M, Kitabatake A (2004) Unexpected mexiletine responses of a mutant cardiac Na+ channel implicate the selectivity filter as a structural determinant of antiarrhythmic drug access. Mol Pharmacol 66:330–336

    Article  CAS  PubMed  Google Scholar 

  • Schwarz W, Palade PT, Hille B (1977) Local-anesthetics—effect of Ph on use-dependent block of sodium channels in frog muscle. Biophys J 20:343–368

    CAS  PubMed  Google Scholar 

  • Smith MR, Goldin AL (1997) Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophys J 73:1885–1895

    CAS  PubMed  Google Scholar 

  • Splawski I, Timothy KW, Tateyama M, Clancy CE, Malhotra A, Beggs AH, Cappuccio FP, Sagnella GA, Kass RS, Keating MT (2002) Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 297:1333–1336

    Article  CAS  PubMed  Google Scholar 

  • Steinlein OK (2001) Genes and mutations in idiopathic epilepsy. Am J Med Genet 106:139–145

    Article  CAS  PubMed  Google Scholar 

  • Strichartz GR, Sanchez V, Arthur GR, Chafetz R, Martin D (1990) Fundamental properties of local anesthetics. II. Measured octanol:buffer partition coefficients and pKa values of clinically used drugs. Anesth Analg 71:158–170

    Article  CAS  PubMed  Google Scholar 

  • Stuhmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi N, Kubo H, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603

    Article  CAS  PubMed  Google Scholar 

  • Sun YM, Favre I, Schild L, Moczydlowski E (1997) On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel—Effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving. J Gen Physiol 110:693–715

    Article  CAS  PubMed  Google Scholar 

  • Sunami A, Glaaser IW, Fozzard HA (2000) A critical residue for isoform difference in tetrodotoxin affinity is a molecular determinant of the external access path for local anesthetics in the cardiac sodium channel. Proc Natl Acad Sci U S A 97:2326–2331

    Article  CAS  PubMed  Google Scholar 

  • Sunami A, Dudley SC Jr, Fozzard HA (1997) Sodium channel selectivity filter regulates antiarrhythmic drug binding. Proc Natl Acad Sci U S A 94:14126–14131

    Article  CAS  PubMed  Google Scholar 

  • Task Force of the Working Group on Arrhythmias of the European Society of Cardiology (1991) The Sicilian Gambit. A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Circulation 84:1831–1851

    Google Scholar 

  • Valdivia CR, Ackerman MJ, Tester DJ, Wada T, McCormack J, Ye B, Makielski JC (2002) A novel SCN5A arrhythmia mutation, M1766L, with expression defect rescued by mexiletine. Cardiovasc Res 55:279–289

    Article  CAS  PubMed  Google Scholar 

  • Valdivia CR, Tester DJ, Rok BA, Porter CB, Munger TM, Jahangir A, Makielski JC, Ackerman MJ (2004) A trafficking defective, Brugada syndrome-causing SCN5A mutation rescued by drugs. Cardiovasc Res 62:53–62

    Article  CAS  PubMed  Google Scholar 

  • Vaughan Williams E (1989) Classification of antiarrhythmic action. In: Vaughan Williams EM (ed) Handbook of experimental pharmacology vol. 89. Springer-Verlag, Berlin, Heidelberg, New York, pp 45–62

    Google Scholar 

  • Viswanathan PC, Bezzina CR, George AL, Roden DM, Wilde AAM, Balser JR (2001) Gating-dependent mechanisms for flecainide action in SCN5A-linked arrhythmia syndromes. Circulation 104:1200–1205

    Article  CAS  PubMed  Google Scholar 

  • Wang DW, Nie L, George AL Jr, Bennett PB (1996) Distinct local anesthetic affinities in Na+ channel subtypes. Biophys J 70:1700–1708

    CAS  PubMed  Google Scholar 

  • Wang DW, Yazawa K, Makita N, George AL Jr, Bennett PB (1997) Pharmacological targeting of long QT mutant sodium channels. J Clin Invest 99:1714–1720

    Article  CAS  PubMed  Google Scholar 

  • Wang DW, Makita N, Kitabatake A, Balser JR, George AL (2000a) Enhanced Na+ channel intermediate inactivation in Brugada syndrome. Circ Res 87:E37–E43

    CAS  PubMed  Google Scholar 

  • Wang SY, Nau C, Wang GK (2000b) Residues in Na(+) channel D3-S6 segment modulate both batrachotoxin and local anesthetic affinities. Biophys J 79:1379–1387

    CAS  PubMed  Google Scholar 

  • Weissenburger J, Davy JM, Chezalviel F (1993) Experimental models of torsades de pointes. Fundam Clin Pharmacol 7:29–38

    CAS  PubMed  Google Scholar 

  • West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci USA 89:10910–10914

    Article  CAS  PubMed  Google Scholar 

  • Wit AL, Rosen MR (1983) Pathophysiologic mechanisms of cardiac-arrhythmias. Am Heart J 106:798–811

    Article  CAS  PubMed  Google Scholar 

  • Wright SN, Wang SY, Kallen RG, Wang GK(1997)Differences in steady-state inactivation between Na channel isoforms affect local anesthetic binding affinity. Biophys J 73:779–788

    Article  CAS  PubMed  Google Scholar 

  • Wright SN, Wang SY, Wang GK (1998) Lysine point mutations in Na+ channel D4-S6 reduce inactivated channel block by local anesthetics. Mol Pharmacol 54:733–739

    CAS  PubMed  Google Scholar 

  • Yamagishi T, Li RA, Hsu K, Marban E, Tomaselli GF (2001) Molecular architecture of the voltage-dependent Na channel: functional evidence for at helices in the pore. J Gen Physiol 118:171–181

    Article  CAS  PubMed  Google Scholar 

  • Yarov-Yarovoy V, Brown J, Sharp EM, Clare JJ, Scheuer T, Catterall WA (2001) Molecular determinants of voltage-dependent gating and binding of pore-blocking drugs in transmembrane segment IIIS6 of the Na+ channel alpha subunit. J Biol Chem 276:20–27

    Article  CAS  PubMed  Google Scholar 

  • Yarov-Yarovoy V, McPhee JC, Idsvoog D, Pate C, Scheuer T, Catterall WA (2002) Role of amino acid residues in transmembrane segments IS6 and IIS6 of the Na+ channel alpha subunit in voltage-dependent gating and drug block. J Biol Chem 277:35393–35401

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Gong G, January CT (1999) Correction of a defective protein trafficking of amutant HERG potassium channel in human long QT syndrome. J Biol Chem 274:31123–31126

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glaaser, I., Clancy, C. (2006). Cardiac Na+ Channels as Therapeutic Targets for Antiarrhythmic Agents. In: Basis and Treatment of Cardiac Arrhythmias. Handbook of Experimental Pharmacology, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29715-4_4

Download citation

Publish with us

Policies and ethics