Skip to main content

Oligomerization of Neurotransmitter Transporters: A Ticket from the Endoplasmic Reticulum to the Plasma Membrane

  • Chapter
Neurotransmitter Transporters

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 175))

Abstract

Cellular localization of neurotransmitter transporters is important for the precise control of synaptic transmission. By removing the neurotransmitters from the synaptic cleft, these transporters terminate signalling and affect duration and intensity of neurotransmission. Thus, a lot of work has been invested in the determination of the cellular compartment to which neurotransmitter transporters localize. In particular, the polarized distribution has received substantial attention. However, trafficking of transporters in the early secretory pathway has been largely ignored. Oligomer formation is a prerequisite for newly formed transporters to pass the stringent quality control mechanisms of the endoplasmic reticulum (ER), and this quaternary structure is also the preferred state which transporters reside in at the plasma membrane. Only properly assembled transporters are able to recruit the coatomer coat proteins that are needed for ER-to-Golgi trafficking. In this review, we will start with a brief description on transporter oligomerization that underlies ER-to-Golgi trafficking, followed by an introduction to ER-to-Golgi trafficking of neurotransmitter transporters. Finally, we will discuss the importance of oligomer formation for the pharmacological action of the illicitly used amphetamines and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams SV, DeFelice LJ (2002) Flux coupling in the human serotonin transporter. Biophys J 83:3268–3282

    Article  PubMed  CAS  Google Scholar 

  • Amara SG, Kuhar MJ (1993) Neurotransmitter transporters: recent progress. Annu Rev Neurosci 16:73–93

    Article  PubMed  CAS  Google Scholar 

  • Androutsellis-Theotokis A, Goldberg NR, Ueda K, Beppu T, Beckman ML, Das S, Javitch JA, Rudnick G (2003) Characterization of a functional bacterial homologue of sodium-dependent neurotransmitter transporters. J Biol Chem 278:12703–12709

    Article  PubMed  CAS  Google Scholar 

  • Antonny B, Schekman R (2001) ER export: public transportation by the COPII coach. Curr Opin Cell Biol 13:438–443

    Article  PubMed  CAS  Google Scholar 

  • Bendahan A, Kanner BI (1993) Identification of domains of a cloned rat brain GABA transporter which are not required for its functional expression. FEBS Lett 318:41–44

    Article  PubMed  CAS  Google Scholar 

  • Busch W, Saier MH Jr (2002) The transporter classification (TC) system, 2002. Crit Rev Biochem Mol Biol 37:287–337

    Article  PubMed  CAS  Google Scholar 

  • Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358:761–764

    Article  PubMed  CAS  Google Scholar 

  • Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–191

    Article  PubMed  CAS  Google Scholar 

  • Farhan H, Korkhov VM, Paulitschke V, Dorostkar MM, Scholze P, Kudalcek O, Freissmuth M, Sitte HH (2004) Two discontinuous segments in the carboxy terminus are required for membrane targeting of the rat GABA transporter-1 (GAT1). J Biol Chem 279:28553–28563

    Article  PubMed  CAS  Google Scholar 

  • Galarneau A, Primeau M, Trudeau LE, Michnick SW (2002) Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat Biotechnol 20:619–622

    Article  PubMed  CAS  Google Scholar 

  • Galli A, Blakely RD, DeFelice LJ (1996) Norepinephrine transporters have channel modes of conduction. Proc Natl Acad Sci U S A 93:8671–8676

    Article  PubMed  CAS  Google Scholar 

  • Gilstring CF, Melin-Larsson M, Ljungdahl PO (1999) Shr3p mediates specific COPII coatomer-cargo interactions required for the packaging of amino acid permeases into ER-derived transport vesicles. Mol Biol Cell 10:3549–3565

    PubMed  CAS  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    Article  PubMed  CAS  Google Scholar 

  • Hahn MK, Robertson D, Blakely RD (2003) A mutation in the human norepinephrine transporter gene (SLC6A2) associated with orthostatic intolerance disrupts surface expression of mutant and wild-type transporters. J Neurosci 23:4470–4478

    PubMed  CAS  Google Scholar 

  • Hastrup H, Karlin A, Javitch JA (2001) Symmetrical dimer of the human dopamine transporter revealed by cross-linking Cys-306 at the extracellular end of the sixth transmembrane segment. Proc Natl Acad Sci U S A 98:10055–10060

    Article  PubMed  CAS  Google Scholar 

  • Heldin CH (1995) Dimerization of cell surface receptors in signal transduction. Cell 80:213–223

    Article  PubMed  CAS  Google Scholar 

  • Hirai T, Subramaniam S (2004) Structure and transport mechanism of the bacterial oxalate transporter OxlT. Biophys J 87:3600–3607

    Article  PubMed  CAS  Google Scholar 

  • Horschitz S, Hummerich R, Schloss P (2003) Functional coupling of serotonin and noradrenaline transporters. J Neurochem 86:958–965

    Article  PubMed  CAS  Google Scholar 

  • Just H, Sitte HH, Schmid JA, Freissmuth M, Kudlacek O (2004) Identification of an additional interaction domain in transmembrane domains 11 and 12 that supports oligomer formation in the human serotonin transporter. J Biol Chem 279:6650–6657

    Article  PubMed  CAS  Google Scholar 

  • Kalandadze A, Wu Y, Fournier K, Robinson MB (2004) Identification of motifs involved in endoplasmic reticulum retention-forward trafficking of the GLT-1 subtype of glutamate transporter. J Neurosci 24:5183–5192

    Article  PubMed  CAS  Google Scholar 

  • Khoshbouei H, Sen N, Guptaroy B, Johnson L, Lund D, Gnegy ME, Galli A, Javitch JA (2004) N-terminal phosphorylation of the dopamine transporter is required for amphetamine-induced efflux. PLoS Biol 2:E78

    Article  PubMed  Google Scholar 

  • Kilic F, Rudnick G (2000) Oligomerization of serotonin transporter and its functional consequences. Proc Natl Acad Sci U S A 97:3106–3111

    Article  PubMed  CAS  Google Scholar 

  • Kocabas AM, Rudnick G, Kilic F (2003) Functional consequences of homo-but not hetero-oligomerization between transporters for the biogenic amine neurotransmitters. J Neurochem 85:1513–1520

    Article  PubMed  CAS  Google Scholar 

  • Korkhov VM, Farhan H, Freissmuth M, Sitte HH (2004) Oligomerization of the γ-aminobutyric acid transporter-1 is driven by an interplay of polar and hydrophobic interactions in transmembrane helix II. J Biol Chem 279:55728–55736

    Article  PubMed  CAS  Google Scholar 

  • Kota J, Ljungdahl PO (2005) Specialized membrane-localized chaperones prevent aggregation of polytopic proteins in the ER. J Cell Biol 168:79–88

    Article  PubMed  CAS  Google Scholar 

  • Kuehn MJ, Schekman R, Ljungdahl PO (1996) Amino acid permeases require COPII components and the ER resident membrane protein Shr3p for packaging into transport vesicles in vitro. J Cell Biol 135:585–595

    Article  PubMed  CAS  Google Scholar 

  • Levi G, Raiteri M (1993) Carrier-mediated release of neurotransmitters. Trends Neurosci 16:415–419

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl PO, Gimeno CJ, Styles CA, Fink GR (1992) SHR3: a novel component of the secretory pathway specifically required for localization of amino acid permeases in yeast. Cell 71:463–478

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie KR, Engelman DM (1998) Structure-based prediction of the stability of transmembrane helix-helix interactions: the sequence dependence of glycophorin A dimerization. Proc Natl Acad Sci U S A 95:3583–3590

    Article  PubMed  CAS  Google Scholar 

  • Mezzacasa A, Helenius A (2002) The transitional ER defines a boundary for quality control in the secretion of tsO45 VSV glycoprotein. Traffic 3:833–849

    Article  PubMed  CAS  Google Scholar 

  • Miller EA, Beilharz TH, Malkus PN, Lee MC, Hamamoto S, Orci L, Schekman R (2003) Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114:497–509

    Article  PubMed  CAS  Google Scholar 

  • Mossessova E, Bickford LC, Goldberg J (2003) SNARE selectivity of the COPII coat. Cell 114:483–495

    Article  PubMed  CAS  Google Scholar 

  • Nelson N (1998) The family of Na+/Cl neurotransmitter transporters. J Neurochem 71:1785–1803

    Article  PubMed  CAS  Google Scholar 

  • Nufer O, Kappeler F, Guldbrandsen S, Hauri HP (2003) ER export of ERGIC-53 is controlled by cooperation of targeting determinants in all three of its domains. J Cell Sci 116:4429–4440

    Article  PubMed  CAS  Google Scholar 

  • Nyfeler B, Michnick SW, Hauri HP (2005) Capturing protein interactions in the secretory pathway of living cells. Proc Natl Acad Sci U S A 102:6350–6355

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Ravazzola M, Meda P, Holcomb C, Moore HP, Hicke L, Schekman R (1991) Mammalian Sec23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm. Proc Natl Acad Sci U S A 88:8611–8615

    Article  PubMed  CAS  Google Scholar 

  • Otte S, Barlowe C (2002) The Erv41p-Erv46p complex: multiple export signals are required in trans for COPII-dependent transport from the ER. EMBO J 21:6095–6104

    Article  PubMed  CAS  Google Scholar 

  • Paladino S, Sarnataro D, Pillich R, Tivodar S, Nitsch L, Zurzolo C (2004) Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J Cell Biol 167:699–709

    Article  PubMed  CAS  Google Scholar 

  • Perego C, Bulbarelli A, Longhi R, Caimi M, Villa A, Caplan MJ, Pietrini G (1997) Sorting of two polytopic proteins, the gamma-aminobutyric acid and betaine transporters, in polarized epithelial cells. J Biol Chem 272:6584–6592

    Article  PubMed  CAS  Google Scholar 

  • Petersen CI, DeFelice LJ (1999) Ionic interactions in the Drosophila serotonin transporter identify it as a serotonin channel. Nat Neurosci 2:605–610

    Article  PubMed  CAS  Google Scholar 

  • Popot JL, Engelman DM (2000) Helical membrane protein folding, stability, and evolution. Annu Rev Biochem 69:881–922

    Article  PubMed  CAS  Google Scholar 

  • Sarnataro D, Paladino S, Campana V, Grassi J, Nitsch L, Zurzolo C (2002) PrPC is sorted to the basolateral membrane of epithelial cells independently of its association with rafts. Traffic 3:810–821

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Nakano A (2003) Oligomerization of a cargo receptor directs protein sorting into COPII-coated transport vesicles. Mol Biol Cell 14:3055–3063

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Nakano A (2004) Reconstitution of coat protein complex II (COPII) vesicle formation from cargo-reconstituted proteoliposomes reveals the potential role of GTP hydrolysis by Sar1p in protein sorting. J Biol Chem 279:1330–1335

    Article  PubMed  CAS  Google Scholar 

  • Saunders C, Ferrer JV, Shi L, Chen J, Merrill G, Lamb ME, Leeb-Lundberg LM, Carvelli L, Javitch JA, Galli A (2000) Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc Natl Acad Sci U S A 97:6850–6855

    Article  PubMed  CAS  Google Scholar 

  • Schmid JA, Sitte HH (2003) Fluorescence resonance energy transfer in the study of cancer pathways. Curr Opin Oncol 15:55–64

    Article  PubMed  Google Scholar 

  • Schmid JA, Just H, Sitte HH (2001a) Impact of oligomerization on the function of the human serotonin transporter. Biochem Soc Trans 29:732–736

    Article  PubMed  CAS  Google Scholar 

  • Schmid JA, Scholze P, Kudlacek O, Freissmuth M, Singer EA, Sitte HH (2001b) Oligomerization of the human serotonin transporter and of the rat GABA transporter 1 visualized by fluorescence resonance energy transfer microscopy in living cells. J Biol Chem 276:3805–3810

    Article  PubMed  CAS  Google Scholar 

  • Scholze P, Freissmuth M, Sitte HH (2002) Mutations within an intramembrane leucine heptad repeat disrupt oligomer formation of the rat GABA transporter 1. J Biol Chem 277:43682–43690

    Article  PubMed  CAS  Google Scholar 

  • Seal RP, Amara SG (1999) Excitatory amino acid transporters: a family in flux. Annu Rev Pharmacol Toxicol 39:431–456

    Article  PubMed  CAS  Google Scholar 

  • Seidel S, Singer EA, Just H, Farhan H, Scholze P, Kudlacek O, Holy M, Koppatz K, Krivanek P, Freissmuth M, Sitte HH (2005) Amphetamines take two to tango: an oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action. Mol Pharmacol 67:140–151

    PubMed  CAS  Google Scholar 

  • Seiden LS, Sabol KE, Ricaurte GA (1993) Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33:639–677

    Article  PubMed  CAS  Google Scholar 

  • Shannon JR, Flattem NL, Jordan J, Jacob G, Black BK, Biaggioni I, Blakely RD, Robertson D (2000) Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency. N Engl J Med 342:541–549

    Article  PubMed  CAS  Google Scholar 

  • Sitte HH, Freissmuth M (2003) Oligomer formation by Na+-Cl-coupled neurotransmitter transporters. Eur J Pharmacol 479:229–236

    Article  PubMed  CAS  Google Scholar 

  • Sitte HH, Huck S, Reither H, Boehm S, Singer EA, Pifl C (1998) Carrier-mediated release, transport rates, and charge transfer induced by amphetamine, tyramine, and dopamine in mammalian cells transfected with the human dopamine transporter. J Neurochem 71:1289–1297

    Article  PubMed  CAS  Google Scholar 

  • Sitte HH, Farhan H, Javitch JA (2004) Sodium-dependent neurotransmitter transporters: oligomerization as a determinant of transporter function and trafficking. Mol Interv 4:38–47

    Article  PubMed  CAS  Google Scholar 

  • Sonders MS, Zhu SJ, Zahniser NR, Kavanaugh MP, Amara SG (1997) Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J Neurosci 17:960–974

    PubMed  CAS  Google Scholar 

  • Sorkina T, Doolen S, Galperin E, Zahniser NR, Sorkin A (2003) Oligomerization of dopamine transporters visualized in living cells by FRETmicroscopy. J Biol Chem 278:28274–28283

    Article  PubMed  CAS  Google Scholar 

  • Standley S, Roche KW, McCallum J, Sans N, Wenthold RJ (2000) PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28:887–898

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15:4102–4108

    PubMed  CAS  Google Scholar 

  • Sung U, Jennings JL, Link AJ, Blakely RD (2005) Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins. Biochem Biophys Res Commun 333:671–678

    Article  PubMed  CAS  Google Scholar 

  • Torres GE, Carneiro A, Seamans K, Fiorentini C, Sweeney A, Yao WD, Caron MG (2003a) Oligomerization and trafficking of the human dopamine transporter. Mutational analysis identifies critical domains important for the functional expression of the transporter. J Biol Chem 278:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Torres GE, Gainetdinov RR, Caron MG (2003b) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4:13–25

    Article  PubMed  CAS  Google Scholar 

  • Veenhoff LM, Heuberger EH, Poolman B (2002) Quaternary structure and function of transport proteins. Trends Biochem Sci 27:242–249

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Matteson J, An Y, Moyer B, Yoo JS, Bannykh S, Wilson IA, Riordan JR, Balch WE (2004) COPII-dependent export of cystic fibrosis transmembrane conductance regulator from the ER uses a di-acidic exit code. J Cell Biol 167:65–74

    Article  PubMed  CAS  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–223

    Article  PubMed  CAS  Google Scholar 

  • Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara M, Ueda A, Zhang D, Deitcher DL, Schwarz TL, Kidokoro Y (1999) Selective effects of neuronal-synaptobrevin mutations on transmitter release evoked by sustained versus transient Ca2+ increases and by cAMP. J Neurosci 19:2432–2441

    PubMed  CAS  Google Scholar 

  • Yuan H, Michelsen K, Schwappach B (2003) 14-3-3 dimers probe the assembly status of multimeric membrane proteins. Curr Biol 13:638–646

    Article  PubMed  CAS  Google Scholar 

  • Zhou FX, Merianos HJ, Brunger AT, Engelman DM (2001) Polar residues drive association of polyleucine transmembrane helices. Proc Natl Acad Sci U S A 98:2250–2255

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farhan, H., Freissmuth, M., Sitte, H.H. (2006). Oligomerization of Neurotransmitter Transporters: A Ticket from the Endoplasmic Reticulum to the Plasma Membrane. In: Sitte, H.H., Freissmuth, M. (eds) Neurotransmitter Transporters. Handbook of Experimental Pharmacology, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29784-7_12

Download citation

Publish with us

Policies and ethics