Skip to main content

What Do Somatic Hypermutation and Class Switch Recombination Teach Us About Chronic Lymphocytic Leukaemia Pathogenesis?

  • Chapter
Chronic Lymphocytic Leukemia

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 294))

Abstract

B-CLL cells express CD5 and IgM/IgD and thus have a mantle zone-like phenotype of naïve cells, which, in normal conditions express unmutated Ig genes. However, recent studies have shown that 50%–70% of CLL harbour somaticmutations of VH genes, as if they had matured in a lymphoid follicle. Interestingly, the presence or absence of somatic hypermutation (SHM) process is associated with the use of particular VH genes. Particular alleles of the VH1–69 gene and the VH4–39 gene are preferentially expressed in an unmutated form, while VH4–34 or the majority of VH3 family genes frequently contain somatic mutations. The fact that some genes like V H 1–69 and V H 3-07 recombine this VH segment to particular JH segments and the restricted use of CDR3 sequences by CLLs expressing the VH4–39 gene suggest that the observed differences in BCR structure in B-CLL could result fromselection by distinct antigenic epitopes. It is currently unclearwhether this putative antigen-driven process could occur prior to leukaemic transformation and/or that the precursors were transformed into leukaemic cells at distinct maturational stages. Themutational profile of Ig genes has been shown to be associated with disease prognosis. These results could favour the idea that CLL could correspond to two different diseases that look alike in morphologic and phenotypic terms. In CLL with mutated Ig genes, the proliferating B cell may have transited through germinal centres, the physiologic site of hypermutation, whereas in CLL with unmutated Ig genes the malignant B cell may derive from a pre-germinal centre naïve B cell. Despite these clinical and molecular differences, recent studies on gene expression profiling of B-CLL cells showed that CLL is characterized by a common gene expression signature that is irrespective of Ig mutational status and differs fromother lymphoid cancers and normal lymphoid subpopulations, suggesting that CLL cases share a commonmechanism of transformation and/or cell of origin. Activation induced cytidine deaminase (AID) plays a key role in SHM and class switch recombination (CSR). However, the mechanisms accounting for AID action and control of its expression remain unclear. In a recent work we have shown that in contrast to normal circulating B-cells, AID transcripts are expressed constitutively in CLL patients undergoing active CSR, but interestingly this expression occurs predominately in unmutated CLL B-cells. These data favour the view that AID proteinmay act differentially on CSR and SHMpathways, but the role-played byAID in both processes remains to be elucidated. Recent work indicates that AID is expressed in a small fraction of tumoral cells, which could suggest that this small fraction of cells may correspond to B-CLL cells that would have recently experienced an AID-inducing stimulus occurring in a specific microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moreau EJ, Matutes E, A’Hern RP, Morilla AM, Morilla RM, Owusu-Ankomah KA, Seon BK, Catovsky D (1997) Improvement of the chronic lymphocytic leukemia scoring system with the monoclonal antibody SN8 (CD79b). Am J Clin Pathol 108:378–382

    PubMed  CAS  Google Scholar 

  2. Ternynck T, Dighiero G, Follezou J, Binet JL (1974) Comparison of normal and CLL lymphocyte surface Ig determinants using peroxidase-labeled antibodies. I. Detection and quantitation of light chain determinants. Blood 43:789–795

    PubMed  CAS  Google Scholar 

  3. Payelle-Brogard B, Magnac C, Alcover A, Roux P, Dighiero G (2002) Defective assembly of the B-cell receptor chains accounts for its low expression in B-chronic lymphocytic leukaemia. Br J Haematol 118:976–985

    Article  PubMed  CAS  Google Scholar 

  4. Payelle-Brogard B, Magnac C, Oppezzo P, Dumas G, Dighiero G, Vuillier F (2003) Retention and defective assembly of the B-cell receptor in the endoplasmic reticulum of chronic lymphocytic leukaemia B cells cannot be reverted upon CD40 ligand stimulation. Leukemia 17:1196–1199

    Article  PubMed  CAS  Google Scholar 

  5. Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M, Montagna L, Piccoli P, Chilosi M, Caligaris-Cappio F (2001) Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 97:2777–2783

    Article  PubMed  CAS  Google Scholar 

  6. Lagneaux L, Delforge A, De Bruyn C, Bernier M, Bron D (1999) Adhesion to bone marrow stroma inhibits apoptosis of chronic lymphocytic leukemia cells. Leuk Lymphoma 35:445–453

    Article  PubMed  CAS  Google Scholar 

  7. Chiorazzi N, Ferrarini M (2003) B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu Rev Immunol 21:841–894

    Article  PubMed  CAS  Google Scholar 

  8. Vrhovac R, Delmer A, Tang R, Marie JP, Zittoun R, Ajchenbaum-Cymbalista F (1998) Prognostic significance of the cell cycle inhibitor p27Kip1 in chronic B-cell lymphocytic leukemia. Blood 91:4694–4700

    PubMed  CAS  Google Scholar 

  9. Dighiero G (1988) An attempt to explain disordered immunity and hypogammaglobulinemia in B-CLL. Nouv Rev Fr Hematol 30:283–288

    PubMed  CAS  Google Scholar 

  10. Honjo T, Kinoshita K, Muramatsu M (2002) Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol 20:165–196

    Article  PubMed  CAS  Google Scholar 

  11. Wu TT, Kabat EA, Bilofsky H (1979) Some sequence similarities among cloned mouse DNA segments that code for lambda and kappa light chains of immunoglobulins. Proc Natl Acad Sci U S A 76:4617–4621

    PubMed  CAS  Google Scholar 

  12. Bachl J, Steinberg C, Wabl M (1997) Critical test of hot spot motifs for immunoglobulin hypermutation. Eur J Immunol 27:3398–3403

    PubMed  CAS  Google Scholar 

  13. Dorner T, Brezinschek HP, Brezinschek RI, Foster SJ, Domiati-Saad R, Lipsky PE (1997) Analysis of the frequency and pattern of somatic mutations within nonproductively rearranged human variable heavy chain genes. J Immunol 158:2779–2789

    PubMed  CAS  Google Scholar 

  14. Jacobs H, Bross L (2001) Towards an understanding of somatic hypermutation. Curr Opin Immunol 13:208–218

    Article  PubMed  CAS  Google Scholar 

  15. Pascual V, Liu YJ, Magalski A, de Bouteiller O, Banchereau J, Capra JD (1994) Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med 180:329–339

    Article  PubMed  CAS  Google Scholar 

  16. Kipps TJ (1993) Immunoglobulin genes in chronic lymphocytic leukemia [see comments]. Blood Cells 19:615–625; discussion 631-612

    PubMed  CAS  Google Scholar 

  17. Schroeder HW Jr, Dighiero G (1994) The pathogenesis of chronic lymphocytic leukemia: analysis of the antibody repertoire. Immunol Today 15:288–294

    Article  PubMed  CAS  Google Scholar 

  18. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL, Schulman P, Vinciguerra VP, Rai K, Rassenti LZ, et al (1998) Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 102:1515–1525

    PubMed  CAS  Google Scholar 

  19. Vasconcelos Y, Davi F, Levy V, Oppezzo P, Magnac C, Michel A, Yamamoto M, Pritsch O, Merle-Beral H, Maloum K, et al (2003) Binet’s staging system and VH genes are independent but complementary prognostic indicators in chronic lymphocytic leukemia. J Clin Oncol 21:3928–3932

    Article  PubMed  CAS  Google Scholar 

  20. Ghiotto F, Fais F, Valetto A, Albesiano E, Hashimoto S, Dono M, Ikematsu H, Allen SL, Kolitz J, Rai KR, et al (2004) Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. J Clin Invest 113:1008–1016

    Article  PubMed  CAS  Google Scholar 

  21. Tobin G, Thunberg U, Johnson A, Thorn I, Soderberg O, Hultdin M, Botling J, Enblad G, Sallstrom J, Sundstrom C, et al (2002) Somatically mutated Ig V(H)3-21 genes characterize a new subset of chronic lymphocytic leukemia. Blood 99:2262–2264

    Article  PubMed  CAS  Google Scholar 

  22. Damle RN, Ghiotto F, Valetto A, Albesiano E, Fais F, Yan XJ, Sison CP, Allen SL, Kolitz J, Schulman P, et al (2002) B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood 99:4087–4093

    Article  PubMed  CAS  Google Scholar 

  23. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94:1848–1854

    PubMed  CAS  Google Scholar 

  24. Maloum K, Davi F, Merle-Beral H, Pritsch O, Magnac C, Vuillier F, Dighiero G, Troussard X, Mauro FF, Benichou J (2000) Expression of unmutated VH genes is a detrimental prognostic factor in chronic lymphocytic leukemia. Blood 96:377–379

    PubMed  CAS  Google Scholar 

  25. Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS (1975) Clinical staging of chronic lymphocytic leukemia. Blood 46:219–234

    PubMed  CAS  Google Scholar 

  26. Binet JL, Lepoprier M, Dighiero G, Charron D, D’Athis P, Vaugier G, Beral HM, Natali JC, Raphael M, Nizet B, et al (1977) A clinical staging system for chronic lymphocytic leukemia: prognostic significance. Cancer 40:855–864

    PubMed  CAS  Google Scholar 

  27. Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H, Freedman A, Inghirami G, Cro L, Baldini L, et al (2001) Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 194:1625–1638

    Article  PubMed  CAS  Google Scholar 

  28. Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X, Yang L, Pickeral OK, Rassenti LZ, Powell J, et al (2001) Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 194:1639–1647

    Article  PubMed  CAS  Google Scholar 

  29. Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE, Zhao H, Ibbotson RE, Orchard JA, Davis Z, et al (2003) ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 101:4944–4945

    Article  PubMed  CAS  Google Scholar 

  30. Vasconcelos Y, Vos JD, Vallat L, Rème T, Lalanne AI, Wanherdrick K, Michel A, Oppezzo P, Magnac C, Maloum K, et al (2005) Genes involved in B-cell receptor activation, cytoskeleton organisation and microenvironment interactions are expressed differentially in stable Ig-mutated and progressive Ig-unmutated chronic lymphocytic leukemia. Leukemia (in press)

    Google Scholar 

  31. Lanham S, Hamblin T, Oscier D, Ibbotson R, Stevenson F, Packham G (2003) Differential signaling via surface IgM is associated with VH gene mutational status and CD38 expression in chronic lymphocytic leukemia. Blood 101:1087–1093

    Article  PubMed  CAS  Google Scholar 

  32. Chen L, Widhopf G, Huynh L, Rassenti L, Rai KR, Weiss A, Kipps TJ (2002) Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood 100:4609–4614

    PubMed  CAS  Google Scholar 

  33. Pritsch O, Hudry-Clergeon G, Buckle M, Petillot Y, Bouvet JP, Gagnon J, Dighiero G (1996) Can immunoglobulin C(H)1 constant region domain modulate antigen binding affinity of antibodies? J Clin Invest 98:2235–2243

    PubMed  CAS  Google Scholar 

  34. Shimizu A, Takahashi N, Yaoita Y, Honjo T (1982) Organization of the constant-region gene family of the mouse immunoglobulin heavy chain. Cell 28:499–506

    Article  PubMed  CAS  Google Scholar 

  35. Kinoshita K, Honjo T (2001) Linking class-switch recombination with somatic hypermutation. Nat Rev Mol Cell Biol 2:493–503

    Article  PubMed  CAS  Google Scholar 

  36. Iwasato T, Shimizu A, Honjo T, Yamagishi H (1990) Circular DNA is excised by immunoglobulin class switch recombination. Cell 62:143–149

    Article  PubMed  CAS  Google Scholar 

  37. Matsuoka M, Yoshida K, Maeda T, Usuda S, Sakano H (1990) Switch circular DNA formed in cytokine-treated mouse splenocytes: evidence for intramolecular DNA deletion in immunoglobulin class switching. Cell 62:135–142

    Article  PubMed  CAS  Google Scholar 

  38. Lorenz M, Jung S, Radbruch A (1995) Switch transcripts in immunoglobulin class switching. Science 267:1825–1828

    PubMed  CAS  Google Scholar 

  39. Sawyers CL, Denny CT, Witte ON (1991) Leukemia and the disruption of normal hematopoiesis. Cell 64:337–350

    Article  PubMed  CAS  Google Scholar 

  40. Dighiero G, Travade P, Chevret S, Fenaux P, Chastang C, Binet JL (1991) B-cell chronic lymphocytic leukemia: present status and future directions. French Cooperative Group on CLL. Blood 78:1901–1914

    PubMed  CAS  Google Scholar 

  41. Fu SM, Chiorazzi N, Kunkel HG, Halper JP, Harris SR (1978) Induction of in vitro differentiation and immunoglobulin synthesis of human leukemic B lymphocytes. J Exp Med 148:1570–1578

    PubMed  CAS  Google Scholar 

  42. Totterman TH, Nilsson K, Sundstrom C (1980) Phorbol ester-induced differentiation of chronic lymphocytic leukaemia cells. Nature 288:176–178

    PubMed  CAS  Google Scholar 

  43. Juliusson G, Robert KH, Hammarstrom L, Smith CI, Biberfeld G, Gahrton G (1983) Mitogen-induced switching of immunoglobulin heavy-chain class secretion in chronic B-lymphocytic leukaemia and immunocytoma cell populations. Scand J Immunol 17:51–59

    PubMed  CAS  Google Scholar 

  44. Sarfati M, Luo H, Delespesse G (1989) IgE synthesis by chronic lymphocytic leukemia cells. J Exp Med 170:1775–1780

    Article  PubMed  CAS  Google Scholar 

  45. Fais F, Sellars B, Ghiotto F, Yan XJ, Dono M, Allen SL, Budman D, Dittmar K, Kolitz J, Lichtman SM, et al (1996) Examples of in vivo isotype class switching in IgM+ chronic lymphocytic leukemia B cells. J Clin Invest 98:1659–1666

    PubMed  CAS  Google Scholar 

  46. Oppezzo P, Magnac C, Bianchi S, Vuillier F, Tiscornia A, Dumas G, Payelle-Brogard B, Ajchenbaum-Cymbalista F, Dighiero G, Pritsch O (2002) Do CLL B-cells correspond to naive or memory B-lymphocytes. Leukemia 16:2438–2446

    Article  PubMed  CAS  Google Scholar 

  47. Sideras P, Mizuta TR, Kanamori H, Suzuki N, Okamoto M, Kuze K, Ohno H, Doi S, Fukuhara S, Hassan MS, et al (1989) Production of sterile transcripts of C gamma genes in an IgM-producing human neoplastic B cell line that switches to IgG-producing cells. Int Immunol 1:631–642

    PubMed  CAS  Google Scholar 

  48. Fujieda S, Lin YQ, Saxon A, Zhang K (1996) Multiple types of chimeric germ-line Ig heavy chain transcripts in human B cells: evidence for trans-splicing of human Ig RNA. J Immunol 157:3450–3459

    PubMed  CAS  Google Scholar 

  49. Mizuta TR, Suzuki N, Shimizu A, Honjo T (1991) Duplicated variable region genes account for double isotype expression in a human leukemic B-cell line that gives rise to single isotype-expressing cells. J Biol Chem 266:12514–12521

    PubMed  CAS  Google Scholar 

  50. Oppezzo P, Vuillier F, Vasconcelos Y, Dumas G, Magnac C, Payelle-Brogard B, Pritsch O, Dighiero G (2003) Chronic lymphocytic leukemia B cells expressing AID display a dissociation between class switch recombination and somatic hypermutation. Blood 9:9

    Google Scholar 

  51. Gearhart PJ, Johnson ND, Douglas R, Hood L (1981) IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts. Nature 291:29–34

    Article  PubMed  CAS  Google Scholar 

  52. Siekevitz M, Kocks C, Rajewsky K, Dildrop R (1987) Analysis of somatic mutation and class switching in naive and memory B cells generating adoptive primary and secondary responses. Cell 48:757–770

    Article  PubMed  CAS  Google Scholar 

  53. Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, Honjo T (1999) Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 274:18470–18476

    Article  PubMed  CAS  Google Scholar 

  54. Yoshikawa K, Okazaki IM, Eto T, Kinoshita K, Muramatsu M, Nagaoka H, Honjo T (2002) AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 296:2033–2036

    Article  PubMed  CAS  Google Scholar 

  55. Petersen-Mahrt SK, Harris RS, Neuberger MS (2002) AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418:99–103

    Article  PubMed  CAS  Google Scholar 

  56. Rada C, Williams GT, Nilsen H, Barnes DE, Lindahl T, Neuberger MS (2002) Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol 12:1748–1755

    Article  PubMed  CAS  Google Scholar 

  57. Besmer E, Gourzi P, Papavasiliou FN (2004) The regulation of somatic hypermutation. Curr Opin Immunol 16:241–245

    PubMed  CAS  Google Scholar 

  58. Okazaki IM, Hiai H, Kakazu N, Yamada S, Muramatsu M, Kinoshita K, Honjo T (2003) Constitutive expression of AID leads to tumorigenesis. J Exp Med 197:1173–1181

    Article  PubMed  CAS  Google Scholar 

  59. Gonda H, Sugai M, Nambu Y, Katakai T, Agata Y, Mori KJ, Yokota Y, Shimizu A (2003) The balance between Pax5 and Id2 activities is the key to AID gene expression. J Exp Med 198:1427–1437

    Article  PubMed  CAS  Google Scholar 

  60. Nagaoka H, Muramatsu M, Yamamura N, Kinoshita K, Honjo T (2002) Activation induced deaminase (AID)-directed hypermutation in the immunoglobulin Smu region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. J Exp Med 195:529–534

    Article  PubMed  CAS  Google Scholar 

  61. Honjo T (2002) Does AID need another aid? Nat Immunol 3:800–801

    Article  PubMed  CAS  Google Scholar 

  62. McCarthy H, Wierda WG, Barron LL, Cromwell CC, Wang J, Coombes KR, Rangel R, Elenitoba-Johnson KS, Keating MJ, Abruzzo LV (2003) High expression of activation-induced cytidine deaminase (AID) and splice variants is a distinctive feature of poor-prognosis chronic lymphocytic leukemia. Blood 101:4903–4908

    PubMed  CAS  Google Scholar 

  63. Albesiano E, Messmer BT, Damle RN, Allen SL, Rai KR, Chiorazzi N (2003) Activation-induced cytidine deaminase in chronic lymphocytic leukemia B cells: expression as multiple forms in a dynamic, variably sized fraction of the clone. Blood 102:3333–3339

    Article  PubMed  CAS  Google Scholar 

  64. Greeve J, Philipsen A, Krause K, Klapper W, Heidorn K, Castle BE, Janda J, Marcu KB, Parwaresch R (2003) Expression of activation-induced cytidine deaminase in human B-cell non-Hodgkin lymphomas. Blood 101:3574–3580

    Article  PubMed  CAS  Google Scholar 

  65. Smit LA, Bende RJ, Aten J, Guikema JE, Aarts WM, van Noesel CJ (2003) Expression of activation-induced cytidine deaminase is confined to B-cell non-Hodgkin’s lymphomas of germinal-center phenotype. Cancer Res 63:3894–3898

    PubMed  CAS  Google Scholar 

  66. Babbage G, Garand R, Robillard N, Zojer N, Stevenson FK, Sahota SS (2004) Mantle cell lymphoma with t(11;14) and unmutated or mutated VH genes expresses AID and undergoes isotype switch events. Blood 103:2795–2798

    Article  PubMed  CAS  Google Scholar 

  67. Dighiero G, Maloum K, Desablens B, Cazin B, Navarro M, Leblay R, Leporrier M, Jaubert J, Lepeu G, Dreyfus B, et al (1998) Chlorambucil in indolent chronic lymphocytic leukemia. French Cooperative Group on Chronic Lymphocytic Leukemia. N Engl J Med 338:1506–1514

    Article  PubMed  CAS  Google Scholar 

  68. Kuppers R, Fischer U, Rajewsky K, Gause A (1992) Immunoglobulin heavy and light chain gene sequences of a human CD5 positive immunocytoma and sequences of four novel VHIII germline genes. Immunol Lett 34:57–62

    PubMed  CAS  Google Scholar 

  69. Weller S, Faili A, Garcia C, Braun MC, Le Deist FF, de Saint Basile GG, Hermine O, Fischer A, Reynaud CA, Weill JC (2001) CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans. Proc Natl Acad Sci U S A 98:1166–1170

    Article  PubMed  CAS  Google Scholar 

  70. Agematsu K, Nagumo H, Shinozaki K, Hokibara S, Yasui K, Terada K, Kawamura N, Toba T, Nonoyama S, Ochs HD, et al (1998) Absence of IgD-CD27(+) memory B cell population in X-linked hyper-IgM syndrome. J Clin Invest 102:853–860

    Article  PubMed  CAS  Google Scholar 

  71. Caligaris-Cappio F, Hamblin TJ (1999) B-cell chronic lymphocytic leukemia. A bird of a different feather. J Clin Oncol 17:399–408

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oppezzo, P., Dighiero, G. (2005). What Do Somatic Hypermutation and Class Switch Recombination Teach Us About Chronic Lymphocytic Leukaemia Pathogenesis?. In: Chronic Lymphocytic Leukemia. Current Topics in Microbiology and Immunology, vol 294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29933-5_5

Download citation

Publish with us

Policies and ethics