Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hamdy Agiza, Gian-Italo Bischi, and Michael Kopel. Multistability in a dynamic Cournot game with three oligopolists. Mathematics and Computers in Simulation, 51:63–90, 1999.

    MathSciNet  Google Scholar 

  2. Christopher Ahlberg and Ben Shneiderman. Visual information seeking: Tight coupling of dynamic query filters with Starfield displays. In Proc. of ACM CHI’94 Conf. on Human Factors in Computing Systems, pp. 313–317, 1994.

    Google Scholar 

  3. M. Sheelagh Carpendale, David Cowperthwaite, and David Fracchia. 3-dimensional pliable surfaces: For the effective presentation of visual information. In Proc. of the ACM Symp. on User Interface Software and Technology, Information Navigation, pp. 217–226, 1995.

    Google Scholar 

  4. Balázs Csébfalvi, Lukas Mroz, Helwig Hauser, Andreas König, and Eduard Gröller. Fast visualization of object contours by non-photorealistic volume rendering. Computer Graphics Forum, 20(3):C 452–C 460, 2001.

    Google Scholar 

  5. Helmut Doleisch, Martin Gasser, and Helwig Hauser. Interactive feature specification for focus+context visualization of complex simulation data. In Proc. of the Joint IEEE TCVG — EG Symp. on Visualization, pp. 239–248, 2003.

    Google Scholar 

  6. Helmut Doleisch and Helwig Hauser. Smooth brushing for focus+context visualization of simulation data in 3D. Journal of WSCG, 10(1):147–154, 2002.

    Google Scholar 

  7. Helmut Doleisch, Michael Mayer, Martin Gasser, Peter Priesching, and Helwig Hauser. Interactive feature specification for simulation data on time-varying grids. In Proc. of Conf. Simulation and Visualization, pp. 291–304, 2005.

    Google Scholar 

  8. Helmut Doleisch, Michael Mayer, Martin Gasser, Roland Wanker, and Helwig Hauser. Case study: Visual analysis of complex, time-dependent simulation results of a diesel exhaust system. In Proc. of the Joint IEEE TCVG — EG Symp. on Visualization, pp. 91–96, Konstanz, Germany, May 2004.

    Google Scholar 

  9. William Augustus Farrand. Information Display in Interactive Design. PhD thesis, University of California, Los Angeles, CA, 1973.

    Google Scholar 

  10. George Furnas. The Fisheye view: A new look at structured files. Technical Memorandum #81-11221-9, Bell Labs, 1981. Reprinted in Card et al., Readings in Information Visualization: Using Vision to Think.

    Google Scholar 

  11. George Furnas. Generalized Fisheye views. In Marilyn M. Mantei and Peter Orbeton, editors, Proc. of the ACM Conf. on Human Factors in Computer Systems, SIGCHI Bulletin, pp. 16–23, 1986.

    Google Scholar 

  12. Donna Gresh, Bernice Rogowitz, Raimond Winslow, David Scollan, and Christina Yung. WEAVE: A system for visually linking 3-D and statistical visualizations, applied to cardiac simulation and measurement data. In IEEE Visualization 2000, pp. 489–492, 2000.

    Google Scholar 

  13. Markus Hadwiger, Christoph Berger, and Helwig Hauser. High-quality two-level volume rendering of segmented data sets on consumer graphics hardware. In Proc. of IEEE Visualization 2003, pp. 301–308, 2003.

    Google Scholar 

  14. Helwig Hauser. Towards new grounds in visualization. ACM SIGGRAPH Computer Graphics, 39(2), 2005.

    Google Scholar 

  15. Helwig Hauser, Florian Ledermann, and Helmut Doleisch. Angular brushing for extended parallel coordinates. In 2002 IEEE Symp. on Information Visualization (InfoVis’ 02), pp. 127–130. IEEE, October 2002.

    Google Scholar 

  16. Helwig Hauser and Matej Mlejnek. Interactive volume visualization of complex flow semantics. In Proc. of the 8th Fall Workshop on Vision, Modeling, and Visualization, pp. 191–198, München, Germany, November 2003.

    Google Scholar 

  17. Helwig Hauser, Lukas Mroz, Gian-Italo Bischi, and Eduard Gröller. Two-level volume rendering-fusing MIP and DVR. In Proc. of IEEE Visualization 2000, pp. 211–218, 2000.

    Google Scholar 

  18. Helwig Hauser, Lukas Mroz, Gian-Italo Bischi, and Eduard Gröller. Two-level volume rendering. IEEE Transactions on Visualization and Computer Graphics, 7(3):242–252, 2001.

    Article  Google Scholar 

  19. Alfred Inselberg. The plane with parallel coordinates. The Visual Computer, 1(2):69–92, 1985.

    MATH  Google Scholar 

  20. Alfred Inselberg. A survey of parallel coordinates. In Hans-Christian Hege and Konrad Polthier, editors, Mathematical Visualization, pp. 167–179. Springer Verlag, Heidelberg, 1998.

    Google Scholar 

  21. Alfred Inselberg and Bernard Dimsdale. Parallel coordinates: a tool for visualizing multidimensional geometry. In Proc. of IEEE Visualization’ 90, pp. 361–378, 1990.

    Google Scholar 

  22. Naftali Kadmon and Eli Shlomi. A polyfocal projection for statistical surfaces. The Cartography Journal, 15(1):36–41, 1978.

    Google Scholar 

  23. T. Alan Keahey and Edward Robertson. Techniques for non-linear magnification transformations. In 1996 IEEE Symp. on Information Visualization (InfoVis’ 96), pp. 38–45. IEEE, 1996.

    Google Scholar 

  24. T. Alan Keahey and Edward Robertson. Nonlinear magnification fields. In IEEE Symp. on Information Visualization (InfoVis’ 97), pp. 51–58. IEEE, October 1997.

    Google Scholar 

  25. Robert Kosara, Silvia Miksch, and Helwig Hauser. Semantic depth of field. In Proc. of the 2001 IEEE Symp. on Information Visualization (InfoVis 2001), pp. 97–104. IEEE Computer Society Press, 2001.

    Google Scholar 

  26. Robert Kosara, Silvia Miksch, and Helwig Hauser. Focus + context taken literally. IEEE Computer Graphics and Applications, 22(1):22–29, 2002.

    Article  Google Scholar 

  27. Robert Kosara, Silvia Miksch, Helwig Hauser, Johann Schrammel, Verena Giller, and Manfred Tscheligi. Useful properties of semantic depth of field for better F+C visualization. In Proc. of the Joint IEEE TCVG — EG Symp. on Visualization, pp. 205–210, 2003.

    Google Scholar 

  28. Matthias Kreuseler, Norma López, and Heidrun Schumann. A scalable framework for information visualization. In Proc. Information Vizualization, pp. 27–36, Salt Lake City, USA, October 2000. IEEE.

    Google Scholar 

  29. John Lamping and Ramana Rao. The hyperbolic browser: A focus + context technique for visualizing large hierarchies. Journal of Visual Languages and Computing, 7(1):33–35, 1996.

    Google Scholar 

  30. John Lamping and Ramana Rao. Visualizing large trees using the hyperbolic browser. In Michael J. Tauber, editor, Proc. of the 1996 Conf. on Human Factors in Computing Systems, CHI 96: April 13—18, 1996, Vancouver, BC, Canada, pp. 388–389, New York, NY 10036, USA, April 1996. ACM Press.

    Google Scholar 

  31. John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique based on hyperbolic geometry for visualizing large hierarchies. In Proc. CHI’95. ACM, 1995.

    Google Scholar 

  32. Ying Leung. Human-computer interface techniques for map based diagrams. In Proc. of the Third International Conf. on Human-Computer Interaction, volume 2 of Designing and Using Human-Computer Interfaces and Knowledge Based Systems; Graphics, pp. 361–368, 1989.

    Google Scholar 

  33. Ying Leung and Mark Apperley. A review and taxonomy of distortion-oriented presentation techniques. ACM Transactions on Computer-Human Interaction, 1(2):126–160, June 1994.

    Article  Google Scholar 

  34. Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics & Applications, 8(5):29–37, 1988.

    Google Scholar 

  35. Ishantha Lokuge and Suguru Ishizaki. Geospace: An interactive visualization system for exploring complex information spaces. In Proc. of the ACM CHI’ 95 Conf. on Human Factors in Computing Systems, 1995.

    Google Scholar 

  36. Jock Mackinlay, George Robertson, and Stuart Card. The perspective wall: Detail and context smoothly integrated. In Proc. of ACM CHI Conf. on Human Factors in Computing Systems, Information Visualization, pp. 173–179, 1991.

    Google Scholar 

  37. Krešimir Matković, Helwig Hauser, Reinhard Sainitzer, and Eduard Gröller. Process visualization with levels of detail. In Pak Chung Wong and Keith Andrews, editors, Proc. IEEE Symp. Information Visualization, InfoVis, pp. 67–70. IEEE Computer Society, 28–29 October 2002.

    Google Scholar 

  38. Lukas Mroz and Helwig Hauser. RTVR-a flexible java library for interactive volume rendering. In IEEE Visualization 2001, pp. 279–286, October 2001.

    Google Scholar 

  39. Hans-Peter Pfister, Bill Lorensen, Chandrajit Bajaj, Gordon Kindlmann, William Schroeder, Lisa Sobierajski-Avila, Ken Martin, Raghu Machiraju, and Jinho Lee. Visualization viewpoints: The transfer function bake-off. IEEE Computer Graphics and Applications, 21(3):16–23, 2001.

    Google Scholar 

  40. George Robertson and Jock Mackinlay. The document lens. In Proc. of the ACM Symp. on User Interface Software and Technology, Visualizing Information, pp. 101–108, 1993.

    Google Scholar 

  41. Manojit Sarkar and Marc Brown. Graphical fisheye views of graphs. In Proc. of ACM CHI’92 Conf. on Human Factors in Computing Systems, Visualizing Objects, Graphs, and Video, pp. 83–91, 1992.

    Google Scholar 

  42. Manojit Sarkar, Scott Snibbe, Oren Tversky, and Steven Reiss. Stretching the rubber sheet: A metaphor for visualizing large layouts on small screens. In Proc. of the ACM Symp. on User Interface Software and Technology, Visualizing Information, pp. 81–91, 1993.

    Google Scholar 

  43. Robert Spence and Mark Apperley. Data base navigation: An office environment for the professional. Behaviour and Information Technology, 1(1):43–54, 1982.

    Google Scholar 

  44. Anne Treisman. Preattentive processing in vision. Computer Vision, Graphics, and Image Processing, 31:156–177, 1985.

    Article  Google Scholar 

  45. Colin Ware. Information Visualization: Perception for Design. Morgan Kaufmann Publishers, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hauser, H. (2006). Generalizing Focus+Context Visualization. In: Bonneau, GP., Ertl, T., Nielson, G.M. (eds) Scientific Visualization: The Visual Extraction of Knowledge from Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30790-7_18

Download citation

Publish with us

Policies and ethics