Skip to main content

Regulators of Candida glabrata Pathogenicity

  • Chapter
Fungal Genomics

Part of the book series: The Mycota ((MYCOTA,volume 13))

  • 1049 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alarco AM, Raymond M (1999) The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans. J Bacteriol 181:700–708

    CAS  PubMed  Google Scholar 

  • Aparicio OM, Billington BL, Gottschling DE (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Asmundsdottir LR, Erlendsdottir H, Gottfredsson M (2002) Increasing incidence of candidemia: results froma 20-year nationwide study in Iceland. J Clin Microbiol 40:3489–3492

    Article  PubMed  Google Scholar 

  • Bagnat M, Simons K (2002) Cell surface polarization during yeast mating. Proc Natl Acad Sci USA 99:14183–14188

    Article  CAS  PubMed  Google Scholar 

  • Beck-Sague C, Jarvis WR (1993) Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980–1990. National Nosocomial Infections Surveillance System. J Infect Dis 167:1247–1251

    CAS  PubMed  Google Scholar 

  • Benni ML, Neigeborn L (1997) Identification of a new class of negative regulators affecting sporulation-specific gene expression in yeast. Genetics 147:1351–1366

    CAS  PubMed  Google Scholar 

  • Bensen ES, Filler SG, Berman J (2002) A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot Cell 1:787–798

    Article  CAS  PubMed  Google Scholar 

  • Bignell E, Negrete-Urtasun S, Calcagno AM, Haynes K, Arst HN Jr, Rogers T (2005) The Aspergillus pH-responsive transcription factor PacC regulates virulence. Mol Microbiol 55(4):1072–1084

    Article  CAS  PubMed  Google Scholar 

  • Biswas K, Rieger KJ, Morschhauser J (2003) Functional analysis of CaRAP1, encoding the Repressor/activator protein 1 of Candida albicans. Gene 307:151–158

    Article  CAS  PubMed  Google Scholar 

  • Borneman AR, Hynes MJ, Andrianopoulos A (2001) An STE12 homolog from the asexual, dimorphic fungus Penicillium marneffei complements the defect in sexual development of an Aspergillus nidulans steA mutant. Genetics 157:1003–1014

    CAS  PubMed  Google Scholar 

  • Brand A, MacCallum DM, Brown AJ, Gow NA, Odds FC (2004) Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot Cell 3:900–909

    Article  CAS  PubMed  Google Scholar 

  • Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109

    Article  CAS  PubMed  Google Scholar 

  • Brockert PJ, Lachke SA, Srikantha T, Pujol C, Galask R, Soll DR (2003) Phenotypic switching and mating type switching of Candida glabrata at sites of colonization. Infect Immun 71:7109–7118

    Article  CAS  PubMed  Google Scholar 

  • Calcagno A, Bignell E, Warn P, Jones MD, Denning DW, Mühlschlegel FA, Rogers TR, Haynes K (2003) Candida glabrata STE12 is required for wild-type virulence and nitrogen starvation induced filamentation. Mol Microbiol 50:1309–1318

    Article  CAS  PubMed  Google Scholar 

  • Calderone RA (2002) Candida and Candidiasis. ASM Press, Washington, DC

    Google Scholar 

  • Cappellaro C, Mrsa V, Tanner W (1998) New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. J Bacteriol 180:5030–5037

    CAS  PubMed  Google Scholar 

  • Caracuel Z, Roncero MI, Espeso EA, Gonzalez-Verdejo CI, Garcia-Maceira FI, Di Pietro A (2003) The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Mol Microbiol 48:765–779

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Wickes BL, Miller GF, Penoyer LA, Kwon-Chung KJ (2000) Cryptococcus neoformans STE12alpha regulates virulence but is not essential for mating. J Exp Med 191:871–882

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Penoyer LA, Kwon-Chung KJ (2001) The second STE12 homologue of Cryptococcus neoformans is MATa-specific and plays an important role in virulence. Proc Natl Acad Sci USA 98:3258–3263

    CAS  PubMed  Google Scholar 

  • Chen YC, Chang SC, Sun CC, Yang LS, Hsieh WC, Luh KT (1997) Secular trends in the epidemiology of nosocomial fungal infections at a teaching hospital in Taiwan, 1981 to 1993. Infect Control Hosp Epidemiol 18:369–375

    CAS  PubMed  Google Scholar 

  • Colman-Lerner A, Chin TE, Brent R (2001) Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 107:739–750

    CAS  PubMed  Google Scholar 

  • Cormack BP, Falkow S (1999) Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. Genetics 151:979–987

    CAS  PubMed  Google Scholar 

  • Cormack BP, Ghori N, Falkow S (1999) An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285:578–582

    Article  CAS  PubMed  Google Scholar 

  • Davis D, Edwards JE, Mitchell AP, Ibrahim AS (2000) Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun 68:5953–5959

    Article  CAS  PubMed  Google Scholar 

  • Davis DA, Bruno VM, Loza L, Filler SG, Mitchell AP (2002) Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis. Genetics 162:1573–1581

    CAS  PubMed  Google Scholar 

  • De Bernardis F, Muhlschlegel FA, Cassone A, Fonzi WA (1998) The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect Immun 66:3317–3325

    PubMed  Google Scholar 

  • De Las Penas A, Pan SJ, Castano I, Alder J, Cregg R, Cormack BP (2003) Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1-and SIR-dependent transcriptional silencing. Genes Dev 17:2245–2258

    Google Scholar 

  • Drori N, Kramer-Haimovich H, Rollins J, Dinoor A, Okon Y, Pines O, Prusky D (2003) External pH and nitrogen source affect secretion of pectate lyase by Colletotrichum gloeosporioides. Appl Environ Microbiol 69:3258–3262

    Article  CAS  PubMed  Google Scholar 

  • Eck R, Stoyan, T, Kunkel W (2001) The centromere-binding factor Cbf1p from Candida albicans complements the methionine auxotrophic phenotype of Saccharomyces cerevisiae. Yeast 18:1047–1052

    Article  CAS  PubMed  Google Scholar 

  • Frieman MB, McCaffery JM, Cormack BP (2002) Modular domain structure in the Candida glabrata adhesin Epa1p, a beta1, 6 glucan-cross-linked cell wall protein. Mol Microbiol 46:479–492

    Article  CAS  PubMed  Google Scholar 

  • Gale CA, Bendel CM, McClellan M, Hauser M, Becker JM, Berman J, Hostetter MK (1998) Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279:1355–1358

    Article  CAS  PubMed  Google Scholar 

  • Gancedo JM (2001) Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:107–123

    CAS  PubMed  Google Scholar 

  • Gudlaugsson O, Gillespie S, Lee K, Vande Berg J, Hu J, Messer S, Herwaldt L, Pfaller M, Diekema D (2003) Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 37:1172–1177

    Article  PubMed  Google Scholar 

  • Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300

    CAS  PubMed  Google Scholar 

  • Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104

    Article  CAS  PubMed  Google Scholar 

  • Haw R, Yarragudi AD, Uemura H (2001) Isolation of a Candida glabrata homologue of RAP1, a regulator of transcription and telomere functionin Saccharomyces cerevisiae. Yeast 18:1277–1284

    CAS  PubMed  Google Scholar 

  • Heiman MG, Walter P (2000) Prm1p, a pheromone-regulated multispanning membrane protein, facilitates plasma membrane fusion during yeast mating. J Cell Biol 151:719–730

    Article  CAS  PubMed  Google Scholar 

  • Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403

    CAS  PubMed  Google Scholar 

  • Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180

    Article  CAS  PubMed  Google Scholar 

  • Inglis DO, Johnson AD (2002) Ash1 protein, an asymmetrically localized transcriptional regulator, controls filamentous growth and virulence of Candida albicans. Mol Cell Biol 22:8669–8680

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Yamamoto M, Yoshihara F, Arisawa M, Aoki Y (1997) Biochemical and genetic characterization of Rbf1p, a putative transcription factor of Candida albicans. Microbiology 143:429–435

    CAS  PubMed  Google Scholar 

  • Jarvis WR (1995) Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin Infect Dis 20:1526–1530

    CAS  PubMed  Google Scholar 

  • Kadosh D, Johnson AD (2001) Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 21:2496–2505

    Article  CAS  PubMed  Google Scholar 

  • Kagi JH, Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27:8509–8515

    CAS  PubMed  Google Scholar 

  • Kaiser B, Munder T, Saluz HP, Kunkel W, Eck R (1999) Identification of a gene encoding the pyruvate decarboxylase gene regulator CaPdc2p from Candida albicans. Yeast 15:585–591

    Article  CAS  PubMed  Google Scholar 

  • Kamran M, Calcagno AM, Findon H, Bignell E, Jones MD, Warn P, Hopkins P, Denning DW, Butler G, Rogers T et al. (2004) Inactivation of transcription factor gene ACE2 in the fungal pathogen Candida glabrata results in hypervirulence. Eukaryot Cell 3:546–552

    Article  CAS  PubMed  Google Scholar 

  • Kelly R, Kwon-Chung KJ (1992) A zinc finger protein from Candida albicans is involved in sucrose utilization. J Bacteriol 174:222–232

    CAS  PubMed  Google Scholar 

  • Kelly MT, MacCallum DM, Clancy SD, Odds FC, Brown AJ, Butler G (2004) The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol Microbiol 53:969–983

    Article  CAS  PubMed  Google Scholar 

  • Khalaf RA, Zitomer RS (2001) The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics 157:1503–1512

    CAS  PubMed  Google Scholar 

  • Khoo B, Brophy B, Jackson SP (1994) Conserved functional domains of the RNA polymerase III general transcription factor BRF. Genes Dev 8:2879–2890

    CAS  PubMed  Google Scholar 

  • Koch KA, Thiele DJ (1999) Functional analysis of a homopolymeric (dA-dT) element that provides nucleosomal access to yeast and mammalian transcription factors. J Biol Chem 274:23752–23760

    Article  CAS  PubMed  Google Scholar 

  • Kuranda MJ, Robbins PW (1991) Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem 266:19758–19767

    CAS  PubMed  Google Scholar 

  • Lachke SA, Srikantha T, Tsai LK, Daniels K, Soll DR (2000) Phenotypic switching in Candida glabrata involves phase-specific regulation of the metallothionein gene MT-II and the newly discovered hemolysin gene HLP. Infect Immun 68:884–895

    Article  CAS  PubMed  Google Scholar 

  • Lane S, Birse C, Zhou S, Matson R, Liu H (2001) DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J Biol Chem 276:48988–48996

    Article  CAS  PubMed  Google Scholar 

  • Lee TI, Rinaldi NJ, Robert F, Odom D, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    CAS  PubMed  Google Scholar 

  • Limjindaporn T, Khalaf RA, Fonzi WA (2003) Nitrogen metabolismand virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1. Mol Microbiol 50:993–1004

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Kohler J, Fink GR (1994) Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266:1723–1726

    CAS  PubMed  Google Scholar 

  • Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949

    Article  CAS  PubMed  Google Scholar 

  • Lorenz RT, Parks LW (1992) Cloning, sequencing, and disruption of the gene encoding sterol C-14 reductase in Saccharomyces cerevisiae. DNA Cell Biol 11:685–692

    CAS  PubMed  Google Scholar 

  • Manning BD, Barrett JG, Wallace JA, Granok H, Snyder M (1999) Differential regulation of the Kar3p kinesin-related protein by two associated proteins, Cik1p and Vik1p. J Cell Biol 144:1219–1233

    Article  CAS  PubMed  Google Scholar 

  • McBride HJ, Yu Y, Stillman DJ (1999) Distinct regions of the Swi5 and Ace2 transcription factors are required for specific gene activation. J Biol Chem 274:21029–21036

    Article  CAS  PubMed  Google Scholar 

  • McCaffrey G, Clay FJ, Kelsay K, Sprague GF Jr (1987) Identification and regulation of a gene required for cell fusion during mating of the yeast Saccharomyces cerevisiae. Mol Cell Biol 7:2680–2690

    CAS  PubMed  Google Scholar 

  • McCreath KJ, Specht CA, Robbins PW (1995) Molecular cloning and characterization of chitinase genes from Candida albicans. Proc Natl Acad Sci USA 92:2544–2548

    CAS  PubMed  Google Scholar 

  • Moreno I, Pedreno Y, Maicas S, Sentandreu R, Herrero E, Valentin E (2003) Characterization of a Candida albicans gene encoding a putative transcriptional factor required for cell wall integrity. FEMS Microbiol Lett 226:159–167

    Article  CAS  PubMed  Google Scholar 

  • Muhlschlegel FA, Fonzi WA (1997) PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol Cell Biol 17:5960–5967

    CAS  PubMed  Google Scholar 

  • Murad AM, Leng P, Wishart JA, Straffon M, Schnell NF, Talibi D, Marechal D, d’Enfert C, Gaillardin C, Brown AJ (2001) NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20:4742–4752

    Article  CAS  PubMed  Google Scholar 

  • Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, Bouin AP, Sensen CW, Hogues H, Van Het Hoog M, Gordon P et al. (2002) Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13:3452–3465

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Garcia F, Sanchez M, Nombela C, Pla J (2001) Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev 25:245–268

    Article  CAS  PubMed  Google Scholar 

  • Nelson B, Kurischko C, Horecka J, Mody M, Nair P, Pratt L, Zougman A, McBroom LD, Hughes TR, Boone C et al. (2003) RAM: a conserved signaling network that regulates Ace2p transcriptional activity and polarized morphogenesis. Mol Biol Cell 14:3782–3803

    Article  CAS  PubMed  Google Scholar 

  • Olaechea PM, Palomar M, Leon-Gil C, Alvarez-Lerma F, Jorda R, Nolla-Salas J, Leon-Regidor MA (2004) Economic impact of Candida colonization and Candida infection in the critically ill patient. Eur J Clin Microbiol Infect Dis 23:323–330

    CAS  PubMed  Google Scholar 

  • Penalva MA, Arst HN Jr (2004) Recent advances in the characterisation of ambient pH regulation of gene expression in filamentous fungi and yeasts. Ann Rev Microbiol 58:425–451

    CAS  Google Scholar 

  • Pfaller MA, Diekema DJ (2002) Role of sentinel surveillance of candidemia: trends in species distribution and antifungal susceptibility. J Clin Microbiol 40:3551–3557

    CAS  PubMed  Google Scholar 

  • Pfaller MA, Diekema DJ, Jones RN, Sader HS, Fluit AC, Hollis RJ, Messer SA (2001) International surveillance of bloodstream infections due to Candida species: frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY Antimicrobial Surveillance Program. J Clin Microbiol 39:3254–3259

    CAS  PubMed  Google Scholar 

  • Pfaller MA, Messer SA, Boyken L, Hollis RJ, Rice C, Tendolkar S, Diekema DJ (2004) In vitro activities of voriconazole, posaconazole, and fluconazole against 4169 clinical isolates of Candida spp. and Cryptococcus neoformans collected during 2001 and 2002 in the ARTEMIS global antifungal surveillance program. Diagn Microbiol Infect Dis 48:201–205

    CAS  PubMed  Google Scholar 

  • Pi H, Chien CT, Fields S (1997) Transcriptional activation upon pheromone stimulation mediated by a small domain of Saccharomyces cerevisiae Ste12p. Mol Cell Biol 17:6410–6418

    CAS  PubMed  Google Scholar 

  • Pittet D, Li N, Woolson RF, Wenzel RP (1997) Microbiological factors influencing the outcome of nosocomial bloodstream infections: a 6-year validated, population-based model. Clin Infect Dis 24:1068–1078

    CAS  PubMed  Google Scholar 

  • Ramon AM, Porta A, Fonzi WA (1999) Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2. J Bacteriol 181:7524–7530

    CAS  PubMed  Google Scholar 

  • Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E et al. (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    Article  CAS  PubMed  Google Scholar 

  • Rine J, Herskowitz I (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116:9–22

    CAS  PubMed  Google Scholar 

  • Roberts RL, Mosch HU, Fink GR (1997) 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae. Cell 89:1055–1065

    Article  CAS  PubMed  Google Scholar 

  • Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett HA, He YD, Dai H, Walker WL, Hughes TR et al. (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287:873–880

    CAS  PubMed  Google Scholar 

  • Rollins JA (2003) The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol Plant Microbe Interact 16:785–795

    CAS  PubMed  Google Scholar 

  • Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL (2003) Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2:1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Schweizer A, Rupp S, Taylor BN, Rollinghoff M, Schroppel K (2000) The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol Microbiol 38:435–445

    Article  CAS  PubMed  Google Scholar 

  • Shore D (1994) RAP1: a protean regulator in yeast. Trends Genet 10:408–412

    Article  CAS  PubMed  Google Scholar 

  • Shore D (1997) Telomere length regulation: getting themeasure of chromosome ends. Biol Chem 378:591–597

    CAS  PubMed  Google Scholar 

  • Shore D, Nasmyth K (1987) Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51:721–732

    Article  CAS  PubMed  Google Scholar 

  • Simon I, Barnett J, Hannett N, Harbison CT, Rinaldi NJ, Volkert TL, Wyrick JJ, Zeitlinger J, Gifford DK, Jaakkola TS et al. (2001) Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106:697–708

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Ganesan K, Malathi K, Ghosh D, Datta A (1994) ACPR, a STE12 homologue from Candida albicans, is a strong inducer of pseudohyphae in Saccharomyces cerevisiae haploids and diploids. Biochem Biophys Res Commun 205:1079–1085

    Article  CAS  PubMed  Google Scholar 

  • Smith HE, Su SS, Neigeborn L, Driscoll SE, Mitchell AP (1990) Role of IME1 expression in regulation of meiosis in Saccharomyces cerevisiae. Mol Cell Biol 10:6103–6113

    CAS  PubMed  Google Scholar 

  • Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538

    Article  CAS  PubMed  Google Scholar 

  • Stead D, Findon H, Yin Z, Walker J, Selway L, Cash P, Dujon BA, Hennequin C, Brown AJP, Haynes K (2005) Proteomic changes associated with inactivation of the Candida glabrata ACE2 virulence-moderating gene. Proteomics 5:1838–1848

    Article  CAS  PubMed  Google Scholar 

  • Stoldt VR, Sonneborn A, Leuker CE, Ernst JF (1997) Efg1p, an essential regulator of morphogenesis of the human pathogen Candidaalbicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991

    Article  CAS  PubMed  Google Scholar 

  • Su SS, Mitchell AP (1993) Molecular characterization of the yeast meiotic regulatory gene RIM1. Nucleic Acids Res 21:3789–3797

    CAS  PubMed  Google Scholar 

  • Talibi D, Raymond M (1999) Isolation of a putative Candida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in Saccharomyces cerevisiae. J Bacteriol 181:231–240

    CAS  PubMed  Google Scholar 

  • Thorvaldsen JL, Sewell AK, McCowen CL, Winge DR (1993) Regulation of metallothionein genes by the ACE1 and AMT1 transcription factors. J Biol Chem 268:12512–12518

    CAS  PubMed  Google Scholar 

  • Tortorano AM, Peman J, Bernhardt H, Klingspor L, Kibbler CC, Faure O, Biraghi E, Canton E, Zimmermann K, Seaton S et al. (2004) Epidemiology of candidaemia in Europe: results of 28-month European Confederation of Medical Mycology (ECMM) hospital-based surveillance study. Eur J Clin Microbiol Infect Dis 23:317–322

    Article  CAS  PubMed  Google Scholar 

  • Tripathi G, Wiltshire C, Macaskill S, Tournu H, Budge S, Brown AJ (2002) Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO J 21:5448–5456

    Article  CAS  PubMed  Google Scholar 

  • Vallim MA, Miller KY, Miller BL (2000) Aspergillus SteA (sterile12-like) is a homeodomain-C2/H2-Zn+2 finger transcription factor required for sexual reproduction. Mol Microbiol 36:290–301

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wilson WA, Fujino MA, Roach PJ (2001) The yeast cyclins Pc16p and Pc17p are involved in the control of glycogen storage by the cyclin-dependent protein kinase Pho85p. FEBS Lett 506:277–280

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Shirogane T, Liu D, Harper JW, Elledge SJ (2003) Exit from exit: resetting the cell cycle through Amn1 inhibition of G protein signaling. Cell 112:697–709

    CAS  PubMed  Google Scholar 

  • Weigel D, Jurgens G, Kuttner F, Seifert E, Jackle H (1989) The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57:645–658

    Article  CAS  PubMed  Google Scholar 

  • Weiss EL, Kurischko C, Zhang C, Shokat K, Drubin DG, Luca FC (2002) The Saccharomyces cerevisiae Mob2p-Cbk1p kinase complex promotes polarized growth and acts with the mitotic exit network to facilitate daughter cell-specific localization of Ace2p transcription factor. J Cell Biol 158:885–900

    Article  CAS  PubMed  Google Scholar 

  • Wey SB, Mori M, Pfaller MA, Woolson RF, Wenzel RP (1988) Hospital-acquired candidemia. The attributable mortality and excess length of stay. Arch Intern Med 148:2642–2645

    Article  CAS  PubMed  Google Scholar 

  • Wheeler RT, Kupiec M, Magnelli P, Abeijon C, Fink GR (2003) A Saccharomyces cerevisiae mutant with increased virulence. Proc Natl Acad Sci USA 100:2766–2770

    Article  CAS  PubMed  Google Scholar 

  • White TC, Agabian N (1995) Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol 177:5215–5221

    CAS  PubMed  Google Scholar 

  • Whiteway M, Dignard D, Thomas DY (1992) Dominant negative selection of heterologous genes: isolation of Candida albicans genes that interfere with Saccharomyces cerevisiae mating factor-induced cell cycle arrest. Proc Natl Acad Sci USA 89:9410–9414

    CAS  PubMed  Google Scholar 

  • Wickes BL, Edman U, Edman JC (1997) The Cryptococcus neoformans STE12alpha gene: a putative Saccharomyces cerevisiae STE12 homologue that is mating type specific. Mol Microbiol 26:951–960

    Article  CAS  PubMed  Google Scholar 

  • Wisplinghoff H, Seifert H, Tallent SM, Bischoff T, Wenzel RP, Edmond MB (2003) Nosocomial bloodstream infections in pediatric patients in United States hospitals: epidemiology, clinical features and susceptibilities. Pediatr Infect Dis J 22:686–691

    PubMed  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    CAS  PubMed  Google Scholar 

  • Yang X, Talibi D, Weber S, Poisson G, Raymond M (2001) Functional isolation of the Candida albicans FCR3 gene encoding a bZip transcription factor homologous to Saccharomyces cerevisiae Yap3p. Yeast 18:1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Yeong FM, Lim HH, Surana U (2002) MEN, destruction and separation: mechanistic links between mitotic exit and cytokinesis in budding yeast. Bioessays 24:659–666

    PubMed  Google Scholar 

  • Young LY, Lorenz MC, Heitman J (2000) ASTE12 homolog is required for mating but dispensable for filamentation in Candida lusitaniae. Genetics 155:17–29

    CAS  PubMed  Google Scholar 

  • Zaragoza O, Rodriguez C, Gancedo C (2000) Isolation of the MIG1 gene from Candida albicans and effects of its disruption on catabolite repression. J Bacteriol 182:320–326

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lester RL, Dickson RC (2004) Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p. J Biol Chem 279:22030–22038

    CAS  PubMed  Google Scholar 

  • Zhou PB, Thiele DJ (1991) Isolation of a metal-activated transcription factor gene from Candida glabrata by complementation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88:6112–6116

    CAS  PubMed  Google Scholar 

  • Zhou P, Thiele DJ (1993) Rapid transcriptional autoregulation of a yeast metalloregulatory transcription factor is essential for high-level copper detoxification. Genes Dev 7:1824–1835

    CAS  PubMed  Google Scholar 

  • Zhu Z, Thiele DJ (1996) A specialized nucleosome modulates transcription factor access to a C. glabrata metal responsive promoter. Cell 87:459–470

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406:90–94

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haynes, K. (2006). Regulators of Candida glabrata Pathogenicity. In: Brown, A.J. (eds) Fungal Genomics. The Mycota, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30809-1_11

Download citation

Publish with us

Policies and ethics