Skip to main content

Free Energy Calculations in Biological Systems. How Useful Are They in Practice?

  • Chapter
New Algorithms for Macromolecular Simulation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 49))

Abstract

Applications of molecular simulations targeted at the estimation of free energies are reviewed, with a glimpse into their promising future. The methodological milestones paving the road of free energy calculations are summarized, in particular free energy perturbation and thermodynamic integration, in the framework of constrained or unconstrained molecular dynamics. The continuing difficulties encountered when attempting to obtain accurate estimates are discussed with an emphasis on the usefulness of large-scale numerical simulations in non-academic environments, like the world of the pharmaceutical industry. Applications of the free energy arsenal of methods is illustrated through a variety of biologically relevant problems, among which the prediction of protein-ligand binding constants, the determination of membrane-water partition coefficients of small, pharmacologically active compounds — in connection with the blood-brain barrier, the folding of a short hydrophobic peptide, and the association of transmembrane α-helical domains, in line with the “two-stage” model of membrane protein folding. Current strategies for improving the reliability of free energy calculations, while making them somewhat more affordable, and, therefore, more compatible with the constraints of an industrial environment, are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kollman, P. A., Free energy calculations: Applications to chemical and biochemical phenomena, Chem. Rev. 93, 2395–2417, 1993.

    Article  Google Scholar 

  2. Postma, J. P. M.; Berendsen, H. J. C.; Haak, J. R., Thermodynamics of cavity formation in water: A molecular dynamics study, Faraday Symp. Chem. Soc. 17, 55–67, 1982.

    Article  Google Scholar 

  3. Warshel, A., Dynamics of reactions in polar solvents. Semiclassical trajectory studies of electron transfer and proton transfer reactions, J. Phys. Chem. 86, 2218–2224, 1982.

    Article  Google Scholar 

  4. Bash, P. A.; Singh, U. C.; Langridge, R.; Kollman, P. A., Free energy calculations by computer simulation, Science 236, 564–568, 1987.

    Google Scholar 

  5. Bash, P. A.; Singh, U. C.; Brown, F. K.; Langridge, R.; Kollman, P. A., Calculation of the relative change in binding free energy of a protein-inhibitor complex, Science 235, 574–576, 1987.

    Google Scholar 

  6. McQuarrie, D. A., Statistical mechanics, Harper and Row: New York, 1976.

    Google Scholar 

  7. Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids, Clarendon Press: Oxford, 1987.

    MATH  Google Scholar 

  8. Kirkwood, J. G., Statistical mechanics of fluid mixtures, J. Chem. Phys. 3, 300–313, 1935.

    Article  MATH  Google Scholar 

  9. Zwanzig, R. W., High-temperature equation of state by a perturbation method. I. Nonpolar gases, J. Chem. Phys. 22, 1420–1426, 1954.

    Article  Google Scholar 

  10. Lu, N.; Singh, J. K.; Kofke, D. A.; Woolf, T. B., Appropriate methods to combine forward and reverse free-energy perturbation averages, J. Chem. Phys. 118, 2977–2984, 2003.

    Article  Google Scholar 

  11. Lu, N.; Kofke, D. A.; Woolf, T. B., Improving the efficiency and reliability of free energy perturbation calculations using overlap sampling methods, J. Comput. Chem. 25, 28–39, 2004.

    Article  Google Scholar 

  12. Mark, A. E. Free Energy Perturbation Calculations. in Encyclopedia of computational chemistry, Schleyer, P. v. R.; Allinger, N. L.; Clark, T.; Gasteiger, J.; Kollman, P. A.; Schaefer III, H. F.; Schreiner, P. R., Eds., vol. 2. Wiley and Sons, Chichester, 1998, pp. 1070–1083.

    Google Scholar 

  13. Torrie, G. M.; Valleau, J. P., Nonphysical sampling distributions in Monte Carlo free energy estimation: Umbrella sampling, J. Comput. Phys. 23, 187–199, 1977.

    Article  Google Scholar 

  14. Pearlman, D. A.; Kollman, P. A., The overlooked bond-stretching contribution in free energy perturbation calculations, J. Chem. Phys. 94, 4532–4545, 1991.

    Article  Google Scholar 

  15. Boresch, S.; Karplus, M., The role of bonded terms in free energy simulations: I. Theoretical analysis, J. Phys. Chem. A 103, 103–118, 1999.

    Article  Google Scholar 

  16. Boresch, S.; Karplus, M., The role of bonded terms in free energy simulations: II. Calculation of their influence on free energy differences of solvation, J. Phys. Chem. A 103, 119–136, 1999.

    Article  Google Scholar 

  17. Pearlman, D. A., A comparison of alternative approaches to free energy calculations, J. Phys. Chem. 98, 1487–1493, 1994.

    Article  Google Scholar 

  18. Beutler, T. C.; Mark, A. E.; van Schaik, R. C.; Gerber, P. R.; van Gunsteren, W. F., Avoiding singularities and neumerical instabilities in free energy calculations based on molecular simulations, Chem. Phys. Lett. 222, 529–539, 1994.

    Article  Google Scholar 

  19. Straatsma, T. P.; Berendsen, H. J. C., Free energy of ionic hydration: Analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations, J. Chem. Phys. 89, 5876–5886, 1988.

    Article  Google Scholar 

  20. Chandler, D., Introduction to modern statistical mechanics, Oxford University Press, 1987.

    Google Scholar 

  21. Kumar, S.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A.; Rosenberg, J. M., The weighted histogram analysis method for free energy calculations on biomolecules. I. The method, J. Comput. Chem. 13, 1011–1021, 1992.

    Article  Google Scholar 

  22. Pearlman, D. A., Determining the contributions of constraints in free energy calculations: Development, characterization, amnd recommendations, J. Chem. Phys. 98, 8946–8957, 1993.

    Article  Google Scholar 

  23. den Otter, W. K.; Briels, W. J., The calculation of free-energy differences by constrained molecular dynamics simulations, J. Chem. Phys. 109, 4139–4146, 1998.

    Article  Google Scholar 

  24. den Otter, W. K., Thermodynamic integration of the free energy along a reaction coordinate in Cartesian coordinates, J. Chem. Phys. 112, 7283–7292, 2000.

    Article  Google Scholar 

  25. Darve, E.; Pohorille, A., Calculating free energies using average force, J. Chem. Phys. 115, 9169–9183, 2001.

    Article  Google Scholar 

  26. Hénin, J.; Chipot, C., Overcoming free energy barriers using unconstrained molecular dynamics simulations, J. Chem. Phys. 121, 2904–2914, 2004.

    Article  Google Scholar 

  27. Jorgensen, W. L.; Ravimohan, C., Monte Carlo simulation of differences in free energies of hydration, J. Chem. Phys. 83, 3050–3054, 1985.

    Article  Google Scholar 

  28. Chipot, C.; Kollman, P. A.; Pearlman, D. A., Alternative approaches to potential of mean force calculations: Free energy perturbation versus thermodynamic integration. Case study of some representative nonpolar interactions, J. Comput. Chem. 17, 1112–1131, 1996.

    Article  Google Scholar 

  29. Widom, B., Some topics in the theory of fluids, J. Chem. Phys. 39, 2808–2812, 1963.

    Article  Google Scholar 

  30. Straatsma, T. P.; Berendsen, H. J. C.; Stam, A. J., Estimation of statistical errors in molecular simulation calculations, Mol. Phys. 57, 89–95, 1986.

    Article  Google Scholar 

  31. Chipot, C.; Pohorille, A., Conformational equilibria of terminally blocked single amino acids at the water-hexane interface. A molecular dynamics study, J. Phys. Chem. B 102, 281–290, 1998.

    Article  Google Scholar 

  32. Chipot, C.; Millot, C.; Maigret, B.; Kollman, P. A., Molecular dynamics free energy perturbation calculations. Influence of nonbonded parameters on the free energy of hydration of charged and neutral species, J. Phys. Chem. 98, 11362–11372, 1994.

    Article  Google Scholar 

  33. Soriano, P.; Montgomery, C.; Geske, R.; Bradley, A., Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice., Cell 64, 693–702, 1991.

    Article  Google Scholar 

  34. Lange, G.; Lesuisse, D.; Deprez, P.; Schoot, B.; Loenze, P.; Benard, D.; Marquette, J. P.; Broto, P.; Sarubbi, E.; Mandine, E., Principles governing the binding of a class of non-peptidic inhibitors to the SH2 domain of src studied by X-ray analysis, J. Med. Chem. 45, 2915–2922, 2002.

    Article  Google Scholar 

  35. Lange, G.; Lesuisse, D.; Deprez, P.; Schoot, B.; Loenze, P.; Benard, D.; Marquette, J. P.; Broto, P.; Sarubbi, E.; Mandine, E., Requirements for specific binding of low affinity inhibitor fragments to the SH2 domain of PP60Src are identical to those for high affinity binding of full length inhibitors, J. Med. Chem. 46, 5184–5195, 2003.

    Article  Google Scholar 

  36. Kale, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K., Namd2: Greater scalability for parallel molecular dynamics, J. Comput. Phys. 151, 283–312, 1999.

    Article  MATH  Google Scholar 

  37. Bhandarkar, M.; Brunner, R.; Chipot, C.; Dalke, A.; Dixit, S.; Grayson, P.; Gullingsrud, J.; Gursoy, A.; Humphrey, W.; Hurwitz, D. et al. Namd users guide, version 2.5. Theoretical biophysics group, University of Illinois and Beckman Institute, 405 North Mathews, Urbana, Illinois 61801, September 2003.

    Google Scholar 

  38. Carrupt, P.; Testa, B.; Gaillard, P. Computational approaches to lipophilicity: Methods and applications. in Reviews in Computational Chemistry, Lipkowitz, K.; Boyd, D. B., Eds., vol. 11. VCH, New York, 1997, pp. 241–345.

    Google Scholar 

  39. Wohnsland, F.; Faller, B., High-throughput permeability pH profile and high-throughput alkane-water log P with artificial membranes, J. Med. Chem. 44, 923–930, 2001.

    Article  Google Scholar 

  40. Bas, D.; Dorison-Duval, D.; Moreau, S.; Bruneau, P.; Chipot, C., Rational determination of transfer free energies of small drugs across the water-oil interface, J. Med. Chem. 45, 151–159, 2002.

    Article  Google Scholar 

  41. Rivail, J. L.; Rinaldi, D., A quantum chemical approach to dielectric solvent effects in molecular liquids, Chem. Phys. 18, 233–242, 1976.

    Article  Google Scholar 

  42. Chipot, C., Rational determination of charge distributions for free energy calculations, J. Comput. Chem. 24, 409–415, 2003.

    Article  MathSciNet  Google Scholar 

  43. Pohorille, A.; Wilson, M.A.; New, M.H.; Chipot, C., Concentrations of anesthetics across the water-membrane interface; The Meyer-Overton hypothesis revisited, Toxicology Lett. 100, 421–430, 1998.

    Article  Google Scholar 

  44. Takeda, S.; Haga, T.; Takaesu, H.; Mitaku, S., Identification of G protein-coupled receptor genes from the human genome sequence, FEBS Lett. 520, 97–101, 2002.

    Article  Google Scholar 

  45. Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.; Le Trong, I.; Teller, D. C.; Okada, T.; Stenkamp, R. E.; Yamamoto, M.; Miyano, M., Crystal structure of rhodopsin: A G protein-coupled receptor, Science 289, 739–745, 2000.

    Article  Google Scholar 

  46. Archer, E.; Maigret, B.; Escrieut, C.; Pradayrol, L.; Fourmy, D., Rhodopsin crystal: New template yielding realistic models of G-protein-coupled receptors?, Trends Pharmacol. Sci. 24, 36–40, 2003.

    Article  Google Scholar 

  47. Talkad, V. D.; Fortune, K. P.; Pollo, D. A.; Shah, G. N.; Wank, S. A.; Gardner, J. D., Direct demonstration of three different states of the pancreatic cholecystokinin receptor, Proc. Natl. Acad. Sci. USA 91, 1868–1872, 1994.

    Google Scholar 

  48. Moroder, L.; Wilschowitz, L.; Gemeiner, M.; Göhring, W.; Knof, S.; Scharf, R.; Thamm, P.; Gardner, J. D.; Solomon, T. E.; Wünsch, E., Zur Synthese von Cholecystokinin-Pankreozymin. Darstellung von [28-Threonin, 31-Norleucin]-und [28-Threonin, 31-Leucin]-Cholecystokinin-Pankreozymin-(25–33)-Nonapeptid, Z. Physiol. Chem. 362, 929–942, 1981.

    Google Scholar 

  49. Gigoux, V.; Escrieut, C.; Fehrentz, J. A.; Poirot, S.; Maigret, B.; Moroder, L.; Gully, D.; Martinez, J.; Vaysse, N.; Fourmy, D., Arginine 336 and Asparagine 333 of the human cholecystokinin-A receptor binding site interact with the penultimate aspartic acid and the C-terminal amide of cholecystokinin, J. Biol. Chem. 274, 20457–20464, 1999.

    Article  Google Scholar 

  50. Gigoux, V.; Escrieut, C.; Silvente-Poirot, S.; Maigret, B.; Gouilleux, L.; Fehrentz, J. A.; Gully, D.; Moroder, L.; Vaysse, N.; Fourmy, D., Met-195 of the cholecystokinin-A interacts with the sulfated tyrosine of cholecystokinin and is crucial for receptor transition to high affinity state, J. Biol. Chem. 273, 14380–14386, 1998.

    Article  Google Scholar 

  51. Gigoux, V.; Maigret, B.; Escrieut, C.; Silvente-Poirot, S.; Bouisson, M.; Fehrentz, J. A.; Moroder, L.; Gully, D.; Martinez, J.; Vaysse, N.; Fourmy, D., Arginine 197 of the cholecystokinin-A receptor binding site interacts with the sulfate of the peptide agonist cholecystokinin, Protein Sci. 8, 2347–2354, 1999.

    Google Scholar 

  52. Daggett, V., Long timescale simulations, Curr. Opin. Struct. Biol. 10, 160–164, 2000.

    Article  Google Scholar 

  53. Taketomi, H.; Ueda, Y.; Gō, N., Studies on protein folding, unfolding and fluctuations by computer simulation. 1.The effect of specific amino acid sequence represented by specific inter-unit interactions, Int. J. Pept. Protein Res. 7, 445–459, 1975.

    Article  Google Scholar 

  54. Duan, Y.; Kollman, P. A., Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution, Science 282, 740–744, 1998.

    Article  Google Scholar 

  55. Pratt, L. R., Molecular theory of hydrophobic effects: “She is too mean to have her name repeated”, Annu. Rev. Phys. Chem. 53, 409–436, 2002.

    Article  Google Scholar 

  56. Pratt, L. R.; Pohorille, A., Hydrophobic effects and modeling of biophysical aqueous solution interfaces, Chem. Rev. 102, 2671–2692, 2002.

    Article  Google Scholar 

  57. Collet, O.; Chipot, C., Non-Arrhenius behavior in the unfolding of a short, hydrophobic α-helix. Complementarity of molecular dynamics and lattice model simulations, J. Am. Chem. Soc. 125, 6573–6580, 2003.

    Article  Google Scholar 

  58. Young, W. S.; Brooks III, C. L., A microscopic view of helix propagation: N and C-terminal helix growth in alanine helices, J. Mol. Biol. 259, 560–572, 1996.

    Article  Google Scholar 

  59. Shimizu, S.; Chan, H. S., Temperature dependence of hydrophobic interactions: A mean force perspective, effects of water density, and non-additivity of thermodynamics signature, J. Am. Chem. Soc. 113, 4683–4700, 2000.

    Google Scholar 

  60. Popot, J. L.; Engelman, D. M., Membrane protein folding and oligomerization: The two-stage model, Biochemistry 29, 4031–4037, 1990.

    Article  Google Scholar 

  61. MacKenzie, K. R.; Prestegard, J. H.; Engelman, D. M., A transmembrane helix dimer: Structure and implications, Science 276, 131–133, 1997.

    Article  Google Scholar 

  62. MacKenzie, K. R.; Engelman, D. M., Structure-based prediction of the stability of transmembrane helix-helix interactions: The sequence dependence of glycophorin A dimerization, Proc. Natl. Acad. Sci. USA 95, 3583–3590, 1998.

    Article  Google Scholar 

  63. Smith, S. O.; Song, D.; Shekar, S.; Groesbeek, M.; Ziliox, M.; Aimoto, S., Structure of the transmembrane dimer interface of glycophorin A in membrane bilayers, Biochemistry 40, 6553–6558, 2001.

    Article  Google Scholar 

  64. Fleming, K. G.; Ackerman, A. L.; Engelman, D. M., The effect of point mutations on the free energy of transmembrane α-helix dimerization, J. Mol. Biol. 272, 266–275, 1997.

    Article  Google Scholar 

  65. Fleming, K. G., Standardizing the free energy change of transmembrane helix-helix interactions, J. Mol. Biol. 323, 2002, 563–571.

    Article  Google Scholar 

  66. Fisher, L. E.; Engelman, D. M.; Sturgis, J. N., Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain, J. Mol. Biol. 293, 639–651, 1999.

    Article  Google Scholar 

  67. Fisher, L. E.; Engelman, D. M.; Sturgis, J. N., Effects of detergents on the association of the glycophorin A transmembrane helix, Biophys. J. 85, 3097–3105, 2003.

    Article  Google Scholar 

  68. Dixit, S. B.; Chipot, C., Can absolute free energies of association be estimated from molecular mechanical simulations? The biotin-streptavidin system revisited, J. Phys. Chem. A 105, 9795–9799, 2001.

    Article  Google Scholar 

  69. Rodriguez-Gomez, D.; Darve, E.; Pohorille, A., Assessing the efficiency of free energy calculation methods, J. Chem. Phys. 120, 3563–3570, 2004.

    Article  Google Scholar 

  70. Simonson, T.; Archontis, G.; Karplus, M., Free energy simulations come of age: Protein-ligand recognition, Acc. Chem. Res. 35, 430–437, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chipot, C. (2006). Free Energy Calculations in Biological Systems. How Useful Are They in Practice?. In: Leimkuhler, B., et al. New Algorithms for Macromolecular Simulation. Lecture Notes in Computational Science and Engineering, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31618-3_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-31618-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25542-0

  • Online ISBN: 978-3-540-31618-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics