Skip to main content

Entropy balance versus energy balance Application to the heat equation and to phase transitions

  • Chapter
Mechanical Modelling and Computational Issues in Civil Engineering

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 23))

Abstract

In these notes we are concerned with heat conduction described by using the entropy balance. The main advantage of this approach consists in recovering the positivity of the absolute temperature, necessary to prove thermodynamical consistency, directly by solving the equation. We introduce the model and discuss its thermomechanical consistency. Then, we investigate from the analytical and mechanical point of view, the Stefan problem written in terms of the entropy balance and using a generalized version of the principle of virual power including the effects of microscopic forces, responsible for the phase transition process. We prove existence of a solution in a fairly general physical framework, accounting for possible thermal memory effects and local interactions between the phases. Uniqueness is proved in the case no thermal memory nor local interactions are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Bonetti, 2002, Global solution to a nonlinear phase transition model with dissipation, Adv. Math. Sci. Appl., 12, 355–376.

    MATH  MathSciNet  Google Scholar 

  2. E. Bonetti, 2003, A new approach to phase transitions with thermal memory via the entropy balance, submitted.

    Google Scholar 

  3. E. Bonetti, P. Colli, M. Frémond, 2003, A phase field model with thermal memory governed by the entropy balance, Math. Models Methods Appl. Sci., 13, 1565–1588.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Bonetti, M. Frémond, 2003, A phase transition model with the entropy balance, Math. Methods Appl. Sci., 26, 539–556.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Bonfanti, M. Frémond, F. Luterotti, 2000, Global solution to a nonlinear system for irreversible phase changes, Adv. Math. Sci. Appl. 10, 1–24.

    MATH  MathSciNet  Google Scholar 

  6. P. Colli, M. Frémond, O. Klein, 2001, Global existence of a solution to a phase field model for supercooling, Nonlinear Anal. Real World Appl. 2, 523–539.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Colli, G. Gentili, C. Giorgi, 1999, Non linear systems describing phase transition models compatible with thermodynamics, Math. Models Methods Appl. Sci. 9, 1015–1037.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Frémond, A. Visintin, 1985, Dissipation dans le changement de phase. Surfusion. Changement de phase irreversible, C. R. Acad. Sci. Paris Sér. I Math. 301, 1265–1268.

    MATH  Google Scholar 

  9. M. Frémond, 2001, Non-smooth Thermomechanics, Springer-Verlag, Heidelberg.

    Google Scholar 

  10. P. Germain, 1973, Mécanique des milieux continus, Masson, Paris.

    MATH  Google Scholar 

  11. M.E. Gurtin, A.C. Pikin, 1968, A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal., 31, 113–126.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. J. Moreau, 1966, Fonctionnelles convexes, Séminaire sur les équations aux dérivées partielles, Collège de France, and 2003, Dipartimento di Ingegneria Civile, Tor Vergata University, Roma.

    Google Scholar 

  13. J.L. Lions, E. Magenes, 1972, Non-homogeneous boundary value problems and applications, Vol. I, Springer-Verlag, Berlin.

    Google Scholar 

  14. F. Luterotti, G. Schimperna, U. Stefanelli, 2001, Existence result for a nonlinear model related to irreversible phase changes, Math. Models Methods Appl. Sci. 11, 1–17.

    Article  MathSciNet  Google Scholar 

  15. A. Visintin, 1996, Models of phase transition, Birkhäuser, Basel.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Colli, P., Bonetti, E., Frémond, M. (2005). Entropy balance versus energy balance Application to the heat equation and to phase transitions. In: Frémond, M., Maceri, F. (eds) Mechanical Modelling and Computational Issues in Civil Engineering. Lecture Notes in Applied and Computational Mechanics, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32399-6_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-32399-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25567-3

  • Online ISBN: 978-3-540-32399-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics