Skip to main content

Protein Adsorption Kinetics: Influence of Substrate Electric Potential

  • Chapter
Proteins at Solid-Liquid Interfaces

Part of the book series: Principles and Practice ((PRINCIPLES))

Abstract

Substrate electric potential plays an important role in determining the adsorptive behavior of proteins and other macromolecules. In this chapter we describe the measurement of protein adsorption kinetics in the presence of an applied potential using optical waveguide lightmode spectroscopy. We analyze the resulting kinetics in terms of transport- and surface-limited models and show that while substrate potential is an important influencing factor, transport limited by convective diffusion and adsorption in seeming violation of electrostatic principles are prevalent in simple protein systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asanov AN, DeLucas LJ, Oldham PB, Wilson WW(1997) Heteroenergetics of bovine serum albumin adsorption from good solvents related to crystallization conditions. J Colloid Interface Sci 191:222–235

    Article  CAS  Google Scholar 

  • Asanov AN, Wilson WW, Odham PB (1998) Regenerable biosensor platform: a total internal reflection fluorescence cell with electrochemical control. Anal Chem 70:1156–1163

    Article  CAS  Google Scholar 

  • Asthagiri D, Lenhoff AM (1997) Influence of structural details in modeling electrostatically driven protein adsorption. Langmuir 13:6761–6768

    Article  CAS  Google Scholar 

  • Bernabeu P, Caprani A (1990) Influence of surface charge on adsorption of fibrinogen and or albumin on a rotating disk electrode of platinum and carbon. Biomaterials 11:258–264

    Article  CAS  Google Scholar 

  • Bos MA, Shervani Z, Anusiem ACI, Giesbers M, Norde W, Kleijn JM (1994) Influence of the electric potential of the interface on the adsorption of proteins. Colloids Surf B 3:91–100

    Article  CAS  Google Scholar 

  • Brusatori MA, Tie Y, Van Tassel PR (2003) Protein adsorption kinetics under an applied electric field: an optical waveguide lightmode spectroscopy study. Langmuir 19:5089–5097

    Article  CAS  Google Scholar 

  • Brusatori MA, Van Tassel PR (2003) Biosensing under an applied voltage using optical waveguide lightmode spectroscopy. Biosens Bioelectron 18:1269–1277

    Article  CAS  Google Scholar 

  • Calonder C, Tie Y, Van Tassel PR (2001) History dependence of protein adsorption kinetics. Proc Natl Acad Sci U S A 98:10664–10669

    Article  CAS  Google Scholar 

  • Calonder C, Van Tassel PR (2001) Kinetic regimes of protein adsorption. Langmuir 17:4392–4395

    Article  CAS  Google Scholar 

  • Carignano MA, Szleifer I (2002) Adsorption of model charged proteins on charged surfaces with grafted polymers. Mol Phys 100:2993–3003

    Article  CAS  Google Scholar 

  • de Feijter JA, Benjamins J, Veer FA (1978) Ellipsometry as a tool to study the adsorption of synthetic and biopolymers at the air-water interface. Biopolymers 17:1759–1772

    Article  Google Scholar 

  • Decher G, Schlenoff JB (eds) (2003). Multilayer Thin Films. Weinheim, Wiley-VCH

    Google Scholar 

  • Fang F, Szleifer I (2003) Competitive adsorption in model charged protein mixtures: equilibrium isotherms and kinetics behavior. J Chem Phys 119:1053–1065

    Article  CAS  Google Scholar 

  • Feng L, Andrade JD (1994) Protein adsorption on low-temperature isotropic carbon 2. Effects of surface charge of solids. J Colloid Interface Sci 166:419–426

    Article  CAS  Google Scholar 

  • Fievet P, Mullet M, Reggiani JC, Pagetti J (1998) Influence of surface charge on adsorption of a hydrophobic peptide onto a carbon surface by capacitance measurements. Colloids Surf A 144:35–42

    Article  CAS  Google Scholar 

  • Fraaije J, Kleijn JM, Vandergraaf M, Dijt JC (1990) Orientation of adsorbed cytochrome-c as a function of the electrical potential of the interface studied by total internal reflection fluorescence. Biophys J 57:965–975

    CAS  Google Scholar 

  • Haynes CA, Norde W (1994) Globular proteins at solid/liquid interfaces. Colloids Surf B 2:517–566

    Article  CAS  Google Scholar 

  • He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  CAS  Google Scholar 

  • Khan GF, Wernet W (1997) Adsorption of proteins on electro-conductive polymer films. Thin Solid Films 300:265–271

    Article  CAS  Google Scholar 

  • Lvov Y, Ariga K, Ichinose I, Kunitake T (1995) Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J Am Chem Soc 117:6117–6123

    Article  CAS  Google Scholar 

  • Malmsten M (ed) (1998a) Biopolymers at Interfaces. Surfactant Science Series. New York, Marcel Dekker

    Google Scholar 

  • Malmsten M (1998b) Formation of adsorbed protein layers. J Colloid Interface Sci 207:186–199

    Article  CAS  Google Scholar 

  • Oberholzer MR, Lenhoff AM (1999) Protein adsorption isotherms through colloidal energetics. Langmuir 15:3905–3914

    Article  CAS  Google Scholar 

  • Ramsden JJ (1993) Review of new experimental techniques for investigating random sequential adsorption. J Stat Phys 73:853–877

    Article  Google Scholar 

  • Ravichandran S, Talbot J (2000) Mobility of adsorbed proteins: a Brownian dynamics study. Biophys J 78:110–120

    CAS  Google Scholar 

  • Roth CM, Lenhoff AM (1993) Electrostatic and Vanderwaals contributions to protein adsorption — computation of equilibrium constants. Langmuir 9:962–972

    Article  CAS  Google Scholar 

  • Roth CM, Lenhoff AM (1995) Electrostatic and Van-Der-Waals contributions to protein adsorption — comparison of theory and experiment. Langmuir 11:3500–3509

    Article  CAS  Google Scholar 

  • Stankowski S, Ramsden JJ (2002) Voltage-dependent coupling of light into ITO-covered waveguides. J Phys D Appl Phys 35:299–302

    Article  CAS  Google Scholar 

  • Tie Y, Calonder C, Van Tassel PR (2003) Protein adsorption: kinetics and history dependence. J Colloid Interface Sci 268:1–11

    Article  CAS  Google Scholar 

  • Tiefenthaler K, Lukosz W (1989) Sensitivity of grating couplers as integrated optical chemical sensors. J Opt Soc Am B Opt Phys 6:209–220

    Article  CAS  Google Scholar 

  • Van Tassel PR (2003) Biomolecules at interfaces. In: Mark HF (ed) Encyclopedia of Polymer Science and Technology, 3rd edn. Wiley Interscience, New York, pp 285–305

    Google Scholar 

  • Voros J, Ramsden JJ, Csucs G, Szendro I, De Paul SM, Textor M, Spencer ND (2002) Optical grating coupler biosensors. Biomaterials 23:3699–3710

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van Tassel, P.R. (2006). Protein Adsorption Kinetics: Influence of Substrate Electric Potential. In: Déjardin, P. (eds) Proteins at Solid-Liquid Interfaces. Principles and Practice. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32658-8_1

Download citation

Publish with us

Policies and ethics