Skip to main content

The F-triangle of the Generalised Cluster Complex

  • Conference paper
Topics in Discrete Mathematics

Part of the book series: Algorithms and Combinatorics ((AC,volume 26))

Abstract

The F-triangle is a refined face count for the generalised cluster complex of Fomin and Reading. We compute the F-triangle explicitly for all irreducible finite root systems. Furthermore, we use these results to partially prove the “F = M Conjecture” of Armstrong which predicts a surprising relation between the F-triangle and the Möbius function of his m-divisible partition poset associated to a finite root system.

Research partially supported by EC’S IHRP Programme, grant HPRN-CT-2001-00272, “Algebraic Combinatorics in Europe.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Armstrong, Generalized noncrossing partitions and combinatorics of Coxeter groups, preprint.

    Google Scholar 

  2. C. A. Athanasiadis, On some enumerative aspects of generalized associ-ahedra, preprint; arXiv:math.C0/0508030.

    Google Scholar 

  3. C. A. Athanasiadis and V. Reiner, Noncrossing partitions for the group D n, SIAM J. Discrete Math. 18 (2004), 397–417.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. (4) 36 (2003), 647–683.

    MATH  MathSciNet  Google Scholar 

  5. T. Brady and C. Watt, K(π, l)’s for Artin groups of finite type, Geom. Dedicata 94 (2002), 225–250.

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Brady and C. Watt, Lattices in finite reflection groups, preprint; arXiv:math.C0/0501502.

    Google Scholar 

  7. L. Carlitz, Some expansion and convolution formulas related to MacMa-hon’s master theorem, SIAM J. Math. Anal. 8 (1977), 320–336.

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Chapoton, Enumerative properties of generalized associahedra, Sémi-naire Lotharingien Combin. 51 (2004), Article B51b, 16 pp.

    Google Scholar 

  9. P. Edelman, Chain enumeration and noncrossing partitions, Discrete Math. 31 (1981), 171–180.

    Article  MathSciNet  Google Scholar 

  10. S. Fomin and N. Reading, Generalized cluster complexes and Coxeter combinatorics, Int. Math. Res. Notices 44 (2005), 2709–2757.

    Article  MathSciNet  Google Scholar 

  11. S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), 497–529.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Fomin and A. Zelevinsky, Cluster algebras II: Finite type classification, Invent. Math. 154 (2003), 63–121.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Fomin and A. Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), 977–1018.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, Massachusetts, 1989.

    MATH  Google Scholar 

  15. J. E. Humphreys, Reflection groups and Goxeter groups, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  16. G. Kreweras, Sur les partitions non croisées d’un cycle, Discrete Math. 1 (1972), 333–350.

    Article  MATH  MathSciNet  Google Scholar 

  17. V. Reiner, Non-crossing partitions for classical reflection groups, Discrete Math. 177 (1997), 195–222.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. J. Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966.

    MATH  Google Scholar 

  19. R. P. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth & Brooks/Cole, Pacific Grove, California, 1986; reprinted by Cambridge University Press, Cambridge, 1998.

    MATH  Google Scholar 

  20. J. R. Stembridge, coxeter, Maple package for working with root systems and finite Coxeter groups; available at http://www.math.lsa.umich.edu/~jrs.

    Google Scholar 

  21. E. Tzanaki, Combinatorics of generalized cluster complexes and hyper-plane arrangements, Ph.D. thesis, University of Crete, Iraklio, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krattenthaler, C. (2006). The F-triangle of the Generalised Cluster Complex. In: Klazar, M., Kratochvíl, J., Loebl, M., Matoušek, J., Valtr, P., Thomas, R. (eds) Topics in Discrete Mathematics. Algorithms and Combinatorics, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33700-8_6

Download citation

Publish with us

Policies and ethics