Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 704))

Abstract

The development of methods for the exploration of reaction paths in condensed molecular systems (solutions and biopolymers) and the computation of the corresponding reaction free energies and kinetic parameters remains at the center of research in computational chemistry. Much has happened in recent years. It is the subject of a good number of the chapters in this book, which give an up to date overview of the enormous progress that has been made. We mention the development of the transition path sampling method by the group of Chandler at Berkeley (see the chapters by Dellago, Bolhuis and Geissler, where also the references to the original literature can be found). An alternative approach with a somewhat different purpose and scope is the metadynamics method developed by the Parrinello group (see the chapter by Laio and Parrinello). Transition path sampling and metadynamics studies to date have focused mostly on dynamical processes which never leave the adiabatic ground state potential energy surface (PES). However barriers for chemical reactions often coincide with an avoided crossing, or, alternatively, can be seen as the result of the coupling between two intersecting diabatic surfaces (see Fig. 1). The diabatic perspective offers certain advantages. This applies in particular to activation energies with a strong solvent contribution. An instructive example of such a reaction is electron transfer (ET). For outer sphere transfer the barrier is almost 100 percent due to rearrangement of the solvent polarization. This observation is a key idea in the Marcus theory of electron transfer [1–4]. In the original formulation of the theory [1] the polarization was described by the linear response of a dielectric continuum. How to quantify solvent polarization by a microscopic order parameter? Polarization is a highly collective quantity with a configurational component (the orientation of molecules) and electronic component (induced polarization).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Marcus (1956) Theory of oxidation-reduction reactions involving electron transfer.1. J. Chem. Phys. 24, p. 966

    Article  ADS  Google Scholar 

  2. R. A. Marcus (1960) Theory of oxidation-reduction reactions involving electron transfer.4. A statistical-mechanical basis for treating contributions from solvent, ligands, and inert salt. Discuss. Faraday Soc. 29, p. 21

    Article  Google Scholar 

  3. R. A. Marcus (1965) On theory of electron-transfer reactions.6. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 43, p. 679

    Article  ADS  Google Scholar 

  4. R. A. Marcus (1993) Electron-transfer reactions in chemistry – theory and experiment. Rev. Mod. Phys. 65, p. 599

    Article  ADS  Google Scholar 

  5. A. Warshel (1982) Dynamics of reactions in polar-solvents – semi-classical trajectory studies of electron-transfer and proton-transfer reactions. J. Phys. Chem. 86, p. 2218

    Article  Google Scholar 

  6. J. K. Hwang and A. Warshel (1987) Microscopic examination of free-energy relationships for electron-transfer in polar-solvents. J. Am. Chem. Soc. 109, p. 715

    Article  Google Scholar 

  7. G. King and A. Warshel (1990) Investigation of the free-energy functions for electron-transfer reactions. J. Chem. Phys. 93, p. 8682

    Article  ADS  Google Scholar 

  8. R. P. Muller and A. Warshel (1995) ab-initio calculations of free-energy barriers for chemical-reactions in solution. J. Phys. Chem. 99, p. 17516

    Article  Google Scholar 

  9. J. Bentzien, R. P. Muller, J. Florian, and A. Warshel (1998) Hybrid ab initio quantum mechanics molecular mechanics calculations of free energy surfaces for enzymatic reactions: The nucleophilic attack in subtilisin. J. Phys. Chem. B 102, p. 2293

    Article  Google Scholar 

  10. J. Villa and A. Warshel (2001) Energetics and dynamics of enzymatic reactions. J. Phys. Chem. B 105, p. 7887

    Article  Google Scholar 

  11. M. Strajbl, G. Hong, and A. Warshel (2002) Ab initio QM/MM simulation with proper sampling: “First principle” calculations of the free energy of the autodissociation of water in aqueous solution. J. Phys. Chem. B 106, p. 13333

    Article  Google Scholar 

  12. R. A. Kuharski, J. S. Bader, D. Chandler, M. Sprik, M. L. Klein, and R. W. Impey (1988) Molecular-model for aqueous ferrous ferric electron-transfer. J. Chem. Phys. 89, p. 3248

    Article  ADS  Google Scholar 

  13. E. A. Carter and J. T. Hynes (1989) Solute-dependent solvent force-constants for ion-pairs and neutral pairs in a polar-solvent. J. Phys. Chem. 93, p. 2184

    Article  Google Scholar 

  14. R. B. Yelle and Y. Ichiye (1997) Solvation free energy reaction curves for electron transfer in aqueous solution: Theory and simulation. J. Phys. Chem. B 101, p. 4127

    Article  Google Scholar 

  15. K. Ando (1997) Quantum energy gap law of outer-sphere electron transfer reactions: A molecular dynamics study on aqueous solution. J. Chem. Phys. 106, p. 116

    Article  ADS  Google Scholar 

  16. K. Ando (2001) Solvent nuclear quantum effects in electron transfer reactions. II. Molecular dynamics study on methanol solution. J. Chem. Phys. 114, p. 9040

    Article  ADS  Google Scholar 

  17. K. Ando (2001) Solvent nuclear quantum effects in electron transfer reactions. III. Metal ions in water. Solute size and ligand effects. J. Chem. Phys. 114, p. 9470

    Article  ADS  Google Scholar 

  18. K. Ando (2001) A stable fluctuating-charge polarizable model for molecular dynamics simulations: Application to aqueous electron transfers. J. Chem. Phys. 115, p. 5228

    Article  ADS  Google Scholar 

  19. D. W. Small, D. V. Matyushov, and G. A. Voth (2003) The theory of electron transfer reactions: What may be missing? J. Am. Chem. Soc. 125, p. 7470

    Article  Google Scholar 

  20. T. Ishida (2005) Polarizable solute in polarizable and flexible solvents: Simulation study of electron transfer reaction systems. J. Phys. Chem. B 109, p. 18558

    Article  Google Scholar 

  21. D. A. Rose and I. Benjamin (1994) Molecular-dynamics of adiabatic and nonadiabatic electron-transfer at the metal-water interface. J. Chem. Phys. 100, p. 3545

    Article  ADS  Google Scholar 

  22. D. A. Rose and I. Benjamin (1995) Solvent-free energies for electron-transfer at a solution metal interface – effect of ion charge and external electric-field. Chem. Phys. Lett. 234, p. 209

    Article  ADS  Google Scholar 

  23. J. B. Straus and G. A. Voth (1993) A computer-simulation study of free-energy curves in heterogeneous electron-transfer. J. Phys. Chem. 97, p. 7388

    Article  Google Scholar 

  24. J. B. Straus, A. Calhoun, and G. A. Voth (1995) Calculation of solvent-free energies for heterogeneous electron-transfer at the water-metal interface – classical versus quantum behavior. J. Chem. Phys. 102, p. 529

    Article  ADS  Google Scholar 

  25. A. Calhoun and G. A. Voth (1998) Isotope effects in electron transfer across the electrode-electrolyte interface: A measure of solvent mode quantization. J. Phys. Chem. B 102, p. 8563

    Article  Google Scholar 

  26. C. Hartnig and M. T. M. Koper (2001) Molecular dynamics simulations of solvent reorganization in electron-transfer reactions. J. Chem. Phys. 115, p. 8540

    Article  ADS  Google Scholar 

  27. C. Hartnig and T. M. Koper (2004) Molecular dynamics simulation of solvent reorganization in ion transfer reactions near a smooth and corrugated surface. J. Phys. Chem. B 108, p. 3824

    Article  Google Scholar 

  28. J. Blumberger, L. Bernasconi, I. Tavernelli, R. Vuilleumier, and M. Sprik (2004) Electronic structure and solvation of copper and silver ions: A theoretical picture of a model aqueous redox reaction. J. Am. Chem. Soc. 126, p. 3928

    Article  Google Scholar 

  29. J. Blumberger and M. Sprik (2004) Free energy of oxidation of metal aqua ions by an enforced change of coordination. J. Phys. Chem. B 108(21), p. 6529

    Article  Google Scholar 

  30. J. Blumberger and M. Sprik (2005) Ab initio molecular dynamics simulation of the aqueous Ru2+/Ru3+ redox reaction: The Marcus perspective. J. Phys. Chem. B 109, p. 6793

    Article  Google Scholar 

  31. Y. Tateyama, J. Blumberger, M. Sprik, and I. Tavernelli (2005) Densityfunctional molecular-dynamics study of the redox reactions of two anionic, aqueous transition-metal complexes. J. Chem. Phys. 122, p. 234505

    Article  ADS  Google Scholar 

  32. J. Blumberger and M. Sprik (2006) Quantum versus classical electron transfer energy as reaction coordinate for the aqueous Ru2+/Ru3+ redox reaction. Theor. Chem. Acc. 115, p. 113

    Article  Google Scholar 

  33. J. Blumberger, I. Tavernelli, M. L. Klein, and M. Sprik (2006) Diabatic free energy curves and coordination fluctuations for the aqueous Ag+/Ag2+ redox couple: A biased Born-Oppenheimer molecular dynamics investigation. J. Chem. Phys. 124, p. 064507

    Article  ADS  Google Scholar 

  34. I. Tavernelli, R. Vuilleumier, and M. Sprik (2002) Ab initio molecular dynamics for molecules with variable numbers of electrons. Phys. Rev. Lett. 88, p. 213002

    Article  ADS  Google Scholar 

  35. J. VandeVondele, R. Lynden-Bell, E. J. Meijer, and M. Sprik (2006) Density functional theory study of tetrathiafulvalene and thianthrene in acetonitrile: Structure, dynamics, and redox properties. J. Phys. Chem. B 110, p. 3614

    Article  Google Scholar 

  36. J. VandeVondele, M. Sulpizi, and M. Sprik (2006) From solvent fluctuations to quantitative redox properties of quinones in methanol and acetonitrile. Angew. Chem. Intl. Ed. 45, p. 1936

    Article  Google Scholar 

  37. R. Car and M. Parrinello (1985) Unified approach for molecular-dynamics and density-functional theory. Phys. Rev. Lett. 55, p. 2471

    Article  ADS  Google Scholar 

  38. V. May and O. Kühn Eds. (2004) Charge and energy transfer dynamics in molecular systems. Wiley-VH: 2nd edition

    Google Scholar 

  39. M. Tachiya (1993) Generalization of the marcus equation for the electrontransfer rate. J. Phys. Chem. 97, p. 5911

    Article  Google Scholar 

  40. R. W. Zwanzig (1954) High-temperature equation of state by a perturbation method.1. Nonpolar gases. J. Chem. Phys. 22, p. 1420

    Article  ADS  Google Scholar 

  41. J. P. Valleau and G. M. Torrie (1977) In Modern Theoretical Chemistry, Berne; B. J. Ed., vol. 5 Plenum, New York

    Google Scholar 

  42. D. Frenkel and B. Smit Eds. (1996) Understanding Molecular Simulation – From Algorithms to Applications. Academic Press: San Diego

    MATH  Google Scholar 

  43. J. G. Kirkwood (1935) Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, p. 300

    Article  ADS  Google Scholar 

  44. M. Souaille and B. Roux (2001) Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comp. Phys. Comm. 135, p. 40

    Article  MATH  ADS  Google Scholar 

  45. M. Tachiya (1989) Relation between the electron-transfer rate and the freeenergy change of reaction. J. Phys. Chem. 93, p. 7050

    Article  Google Scholar 

  46. A. J. Bard and L. R. Faulkner, Eds. (2001) Electrochemical Methods. John Wiley & Sons, 2nd ed.

    Google Scholar 

  47. CPMD Version 3.x, The CPMD consortium, http://www.cpmd.org, MPI für Festkörperforschung and the IBM Zurich Research Laboratory

    Google Scholar 

  48. N. Troullier and J. Martins (1991) Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, p. 1993

    Article  ADS  Google Scholar 

  49. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter (2005) QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comp. Phys. Comm. 167, p. 103

    Article  ADS  Google Scholar 

  50. The CP2K developers group, http://cp2k.berlios.de/ (2005)

    Google Scholar 

  51. C. Hartwigsen, S. Goedecker, and J. Hutter (1998) Relativistic separable dualspace Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, p. 3641

    Article  ADS  Google Scholar 

  52. M. Sprik and G. Ciccotti (1998) Free energy from constrained molecular dynamics. J. Chem. Phys. 109, p. 7737

    Article  ADS  Google Scholar 

  53. P. L. Geissler, C. Dellago, and D. Chandler (1999) Chemical dynamics of the protonated water trimer analyzed by transition path sampling. Phys. Chem. Chem. Phys. 1, p. 1317

    Article  Google Scholar 

  54. P. L. Geissler, C. Dellago, and D. Chandler (1999) Kinetic pathways of ion pair dissociation in water. J. Phys. Chem. B 103, p. 3706

    Article  Google Scholar 

  55. G. Hummer, L. R. Pratt, and A. E. Garcia (1998) Molecular theories and simulation of ions and polar molecules in water. J. Phys. Chem. A 102, p. 7885

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Blumberger, J., Sprik, M. (2006). Redox Free Energies from Vertical Energy Gaps: Ab Initio Molecular Dynamics Implementation. In: Ferrario, M., Ciccotti, G., Binder, K. (eds) Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 2. Lecture Notes in Physics, vol 704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35284-8_18

Download citation

Publish with us

Policies and ethics