Skip to main content

Self-structuration of Three-Wave Dissipative Solitons in CW-Pumped Backward Optical Parametric Oscillators

  • Conference paper
  • First Online:
Optical Solitons

Part of the book series: Lecture Notes in Physics ((LNP,volume 613))

Abstract

Generation of ultra-short optical pulses in cw-pumped cavities are mostly associated to mode locking in active media, as doped fibers or solid-state lasers. The cavity contains not only a gain element (atoms or ions) but also a nonlinear element of the host medium, such as self-phase modulation (SPM) or intensity dependent absorption. Our aim here is to present another mechanism for pulse generation in an optical cavity due to the nonlinear three-wave counter streaming interaction. We show that the same mechanism, responsible for symbiotic solitary wave morphogenesis in the Brillouin-fiber-ring laser, may act for picosecond pulse generation in a quadratic optical parametric oscillator (OPO). The resonant condition is automatically satisfied in stimulated Brillouin backscattering (SBS); however, in order to achieve counter-streaming quasi-phase matching (QPM) between the three optical waves in the χ(2) medium, a grating of sub-μm period is required. Such a quadratic medium supports solitary waves that result from energy exchanges between dispersionless waves of different velocities. The structure of these temporal localized solitary waves is determined by a balance between the energy exchange rates and the velocity mismatch between the three interacting waves. The backward QPM configuration spontaneously generates tunable picosecond solitary pulses from noise when the quadratic material is placed inside a single resonant OPO. We show, by a stability analysis of the degenerate backward OPO in the QPM decay interaction between a CW-pump and a backward signal, that the inhomogeneous stationary solutions are always unstable, whatever the cavity length and pump power above single OPO threshold. Starting from any initial condition, the nonlinear dynamics exhibits self-pulsing of the backward signal with unlimited amplification and compression. Above a critical steepening, dispersion may saturate this singular behavior leading to a new type of dynamical solitary structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal G. P.: Nonlinear fiber optics, (Academic Press, New York, 1989).

    Google Scholar 

  2. Picholle E., Montes C., Leycuras C., Legrand O., and Botineau J.:Phys. Rev. Lett. 66, 1454 (1991).

    Article  ADS  Google Scholar 

  3. Montes C., Mamhoud A., and Picholle E.:Phys. Rev. A 49, 1344 (1994).

    Article  ADS  Google Scholar 

  4. Montes C., Bahloul D., Bongrand I., Botineau J., Cheval G., Mamhoud A., Picholle E., and Picozzi A.:J. Opt. Soc. Am. B 16, 932 (1999).

    Article  ADS  Google Scholar 

  5. Picozzi A. and Hælterman M.: Opt. Lett. 23, 1808 (1998).

    Article  ADS  Google Scholar 

  6. Montes C., Picozzi A., and Hælterman M.: Optical Solitons: Theoretical Challenges and Industrial Perspectives-Lecture 16, Les Houches Workshop, V.E. Zakharov and S. Wabnitz eds., EDP Springer, 283–292 (1999).

    Google Scholar 

  7. Kang J.U., Ding Y.J., Burns W.K., and Melinger J.S.:Opt. Lett. 22, 862 (1997).

    Article  ADS  Google Scholar 

  8. Gu X., Korotkov R.Y., Ding Y.J., Kang J.U., and Khurgin J.B.:J. Opt. Soc. Am. B 15, 1561 (1998).

    Article  ADS  Google Scholar 

  9. Gu X., Makarov M., Ding Y.J., Khurgin J.B., and Risk W.P.:Opt. Lett. 24, 127 (1999).

    Article  ADS  Google Scholar 

  10. Armstrong J.A., Jha S.S., and Shiren N.S.:IEEE J. Quant. Elect. QE-6, 123 (1970).

    Article  ADS  Google Scholar 

  11. Nozaki K. and Taniuti T.:J. Phys. Soc. Jpn. 34, 796 (1973).

    Article  ADS  Google Scholar 

  12. Kaup D.J., Reiman A., and Bers A.:Rev. Mod. Phys. 51, 275 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  13. Trillo S.: Opt. Lett. 21, 1111 (1996).

    Article  ADS  Google Scholar 

  14. McCall S.L. and Hahn E.L.:Phys. Rev. Lett. 18, 908 (1967).

    Article  ADS  Google Scholar 

  15. Drühl K., Wenzel R.G. and Carlsten J.L.: Phys. Rev. Lett. 51, 1171 (1983).

    Article  ADS  Google Scholar 

  16. Montes C., Picozzi A., and Bahloul D.: Phys. Rev. E 55, 1092 (1997).

    Article  ADS  Google Scholar 

  17. Matsumoto M. and Tanaka K. IEEE J. Quantum Electron. 31, 700 (1995).

    Article  ADS  Google Scholar 

  18. Ding Y. J. and Khurgin J.B.: IEEE J. Quantum Electron. 32, 1574 (1996).

    Article  ADS  Google Scholar 

  19. D’Alessandro G., Russell P.St., and Wheeler A.A.:Phys. Rev. A 55, 3211 (1997).

    Article  ADS  Google Scholar 

  20. Picozzi A. and M. Hælterman M.: Phys. Rev. Lett. 86, 2010 (2001).

    Article  ADS  Google Scholar 

  21. Morozov S.F., Piskunova L.V., Sushchik M.M., and Freidman G.I.: Sov. J. Quant. Electron. 8, 576 (1978).

    Article  ADS  Google Scholar 

  22. Craik A.D.D., Nagata M., and Moroz I.M.: Wave Motion 15, 173 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  23. Botineau J., Leycuras C., Montes C., and Picholle E.: Opt. Comm. 109, 126 (1994).

    Article  ADS  Google Scholar 

  24. Yang S.T., Eckaerdt R.C., and Byer R.L.:J. Opt. Soc. Am. B 10, 1684 (1993).

    Article  ADS  Google Scholar 

  25. Trillo S. and Hælterman M.: Opt. Lett. 21, 1114 (1996).

    Article  ADS  Google Scholar 

  26. Dmitriev V.G., Gurzadyan G.G., Nikogosyan D.N.: Handbook of Nonlinear Optical Crystals, (Springer-Verlag 1991).

    Google Scholar 

  27. Armstrong J.A., Bloembergen N., Ducuing J., and Perhan P.S.: Phys. Rev. 127, 1918 (1992).

    Article  ADS  Google Scholar 

  28. Fejer M.M., Magel G.A., Jundt D.H., and Byer R.L.: IEEE J. Quantum Electron. 28, 2631 (1992).

    Article  ADS  Google Scholar 

  29. Abramowitz M. and Stegun I.A.: Handbook of Mathematical Functions, 8th ed. (Dover Public., New-York, 1972).

    MATH  Google Scholar 

  30. Picozzi A. and Haælterman M.: Phys. Rev. Lett. 84, 5760 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Montes, C. (2002). Self-structuration of Three-Wave Dissipative Solitons in CW-Pumped Backward Optical Parametric Oscillators. In: Porsezian, K., Kuriakose, V.C. (eds) Optical Solitons. Lecture Notes in Physics, vol 613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36141-3_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-36141-3_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00155-3

  • Online ISBN: 978-3-540-36141-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics