Skip to main content

On the Complexity of Theory Curbing

  • Conference paper
  • First Online:
Logic for Programming and Automated Reasoning (LPAR 2000)

Part of the book series: Lecture Notes in Artificial Intelligence ((LNAI,volume 1955))

Abstract

In this paper, we determine the complexity of propositional theory curbing. Theory Curbing is a nonmonotonic technique of common sense reasoning that is based on model minimality but unlike circumscription treats disjunction inclusively. In an earlier paper, theory curbing was shown to be feasible in PSPACE, but the precise complexity was left open. In the present paper we prove it to be PSPACE-complete. In particular, we show that both the model checking and the inferencing problem under curbed theories are PSPACE complete. We also study relevant cases where the complexity of theory curbing is located - just as for plain propositional circumscription - at the second level of the polynomial hierarchy and is thus presumably easier than PSPACE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Bodenstorfer. How Many Minimal Upper Bounds of Minimal Upper Bounds. Computing, 56:171–178, 1996. 2, 7, 8

    Article  MathSciNet  Google Scholar 

  2. M. Cadoli. The Complexity of Model Checking for Circumscriptive Formulae. Information Processing Letters, 44:113–118, 1992. 2

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Cadoli, A. Giovanardi, and M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. In Proc. AAAI/IAAI-98, pp. 262–267, 1998. 2

    Google Scholar 

  4. E. Chan. A Possible Worlds Semantics for Disjunctive Databases. IEEE Trans. Knowledge and Data Engineering, 5(2):282–292, 1993. 1, 2

    Article  Google Scholar 

  5. H. Decker and J. C. Casamayor. Sustained Models and Sustained Answers in First-Order Databases. In A. Olivé, editor, Proc. 4th International Workshop on the Deductive Approach to Information Systems and Databases (DAISD 1993), 1993, Lloret de Mar, Catalonia, pp. 267–286, Report de recerca, LSI/93-25-R, Departament de Llenguatges i Sistemes Informatics, Universitat Politecnica de Catalunya, 1990. 1, 2

    Google Scholar 

  6. T. Eiter and G. Gottlob. Propositional Circumscription and Extended Closed World Reasoning are ΠP 2-complete. Theoretical Computer Science, 114(2):231–245, 1993. Addendum 118:315. 2

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Eiter, G. Gottlob, and Y. Gurevich. Curb Your Theory! A circumscriptive approach for inclusive interpretation of disjunctive information. In R. Bajcsy, editor, Proc. 13th Intl. Joint Conference on Artificial Intelligence (IJCAI-93), pp. 634–639. Morgan Kaufmann, 1993. 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 6, 6, 6, 6, 6, 7, 7, 7, 14

    Google Scholar 

  8. R. Feldmann, B. Monien, and S. Schamberger. A Distributed Algorithm to Evaluate Quanti-fied Boolean Formulae. In Proc. National Conference on AI (AAAI’00), Austin, Texas, 2000. AAAI Press. 2

    Google Scholar 

  9. A. Flögel, M. Karpinski, and H. Kleine Büning. Resolution for Quantified Boolean Formulas. Information and Computation, 117:12–18, 1995. 2

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Liberatore. The Complexity of Iterated Belief Revision. In F. Afrati and P. Kolaitis, editors, Proc. 6th Intl. Conference on Database Theory (ICDT-97), LNCS 1186, pp. 276–290, Springer, 1997. 2, 2

    Google Scholar 

  11. P. Liberatore. The Complexity of Belief Update. Artificial Intelligence, 119(1–2):141–190, 2000. 2

    Article  MATH  MathSciNet  Google Scholar 

  12. V. Lifschitz. Computing Circumscription. In Proc. International Joint Conference on Artificial Intelligence (IJCAI-85), pp. 121–127, 1985. 5, 6

    Google Scholar 

  13. V. Lifschitz. Circumscription. In D. Gabbay, C. Hogger, and J. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Programming, volume III, pages 297–352. Clarendon Press, Oxford, 1994. 1, 16

    Google Scholar 

  14. J. McCarthy. Circumscription-A Form of Non-Monotonic Reasoning. Artificial Intelligence, 13:27–39, 1980. 1

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Rintanen. Improvements to the Evaluation of Quantified Boolean Formulae. In Proc. IJCAI’ 99, pp. 1192–1197. AAAI Press, 1999. 2

    Google Scholar 

  16. K. Ross. The Well-Founded Semantics for Disjunctive Logic Programs. In W. Kim, J.-M. Nicholas, and S. Nishio, editors, Proc. First Intl. Conf. on Deductive and Object-Oriented Databases (DOOD-89), pp. 352–369. Elsevier Science Pub., 1990. 1, 2

    Google Scholar 

  17. K. Ross and R. Topor. Inferring Negative Information From Disjunctive Databases. Journal of Automated Reasoning, 4(2):397–424, 1988. 1, 2

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Sakama. Possible Model Semantics for Disjunctive Databases. In W. Kim, J.-M. Nicholas, and S. Nishio, editors, Proc. First Intl. Conf. on Deductive and Object-Oriented Databases (DOOD-89), pp. 337–351. Elsevier Science Pub., 1990. 1, 2

    Google Scholar 

  19. C. Sakama and K. Inoue. Negation in Disjunctive Logic Programs. In Proc. ICLP-93, Budapest, Hungary, June 1993. MIT-Press. 1, 2

    Google Scholar 

  20. F. Scarcello, N. Leone, and L. Palopoli. Curbing Theories: Fixpoint Semantics and Complexity Issues. In M. Alpuente and M. I. Sessa, editors, Proc. 1995 Joint Conference on Declarative Programming (GULP-PRODE’95), pp. 545–554. Palladio Press, 1995. 2, 2, 3, 3, 3, 15

    Google Scholar 

  21. J. van Benthem and K. Doets. Higher Order Logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, Vol.I, chapter I.4, pp. 275–329. D.Reidel Pub., 1983. 5, 5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eiter, T., Gottlob, G. (2000). On the Complexity of Theory Curbing. In: Parigot, M., Voronkov, A. (eds) Logic for Programming and Automated Reasoning. LPAR 2000. Lecture Notes in Artificial Intelligence(), vol 1955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44404-1_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-44404-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41285-4

  • Online ISBN: 978-3-540-44404-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics