Skip to main content

Effect of Excluded Volume and Anisotropy on Granular Statistics: “Fermi Statistics” and Condensation

  • Chapter
  • First Online:
Granular Gases

Part of the book series: Lecture Notes in Physics ((LNP,volume 564))

Abstract

We explore the consequences of the excluded volume interaction of hard spheres at high densities and present a theory for excited granular materials. We first demonstrate that, in the presence of gravity, the granular density crosses over from Boltzmann to Fermi statistics, when temperature is decreased in the weak excitation limit. Comparisons of numerical simulations with our predictions concerning the scaling behavior of temperature with agitation frequency, gravity and particle-diameter show satisfying agreement. Next, within the framework of the Enskog theory of hard spheres, we interpret this crossover as a “condensation” of hard spheres from the dilute gas-state to a high density solid-like state. In the high density, low temperature limit Enskog theory fails because it predicts densities larger than the closed packed density below a certain temperature. We show how to extend the range of applicability of the Enskog theory to arbitrarily low temperatures by constructing a physical solution: all particles that are situated in regions with densities larger than a certain maximum density are assumed to be “condensed”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Hayakawa and D. C. Hong, Phys. Rev. Lett., 78, 2764 (1997).

    Article  ADS  Google Scholar 

  2. D. C. Hong, Physica A 271, 192 (1999).

    Article  ADS  Google Scholar 

  3. H. Jaeger, S. R. Nageland R. P. Behringer, Physics Today, 49, 32 (1996), Rev. Mod. Phys. 68, 1259 (1996); H. Hayakawa, H. Nishimori, S. Sasa and Y-h. Taguchi, Jpn. J. Appl. Phys. Part 1, 34, 397 (1995) and references therein.

    Article  Google Scholar 

  4. J. Jenkins and S. Savage, J. Fluid. Mech. 130, 197 (1983); S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases (Cambridge, London, 1970); J. A. McLennan, Introduction to Non-Equilibrium Statistical Mechanics, Prentice Hall (1989).

    Article  ADS  Google Scholar 

  5. S. Warr and J. P. Hansen, Europhys. Lett. Vol. 36, no.8 (1996). Urbach also found that the two point correlation function of excited granular system is the same as that of the equilibrium hard sphere gas at the equivalent packing density (See J. S. Urbach, Experimental observations of non-equilibrium distributions and transitions in a 2D granular gas (in this volume, page 410.)

    Article  Google Scholar 

  6. D. M. Hanes and D. Inman, J. Fluid. Mech. 150, 357 (1985); S. Savage and D. Jeffrey, ibid, 110, 255 (1981).

    Article  ADS  Google Scholar 

  7. For example, see: J. P. Bouchaoud, M. E. Cates, R. Prakash, and S. F. Edwards, J. Phys. France 4, 1383 (1994).

    Article  Google Scholar 

  8. E. Clément & J. Rajchenbach, Europhys. Lett. 16, 133 (1991).

    Article  ADS  Google Scholar 

  9. J. A. C. Gallas, H. J. Herrmann & S. Sokolowski, Physica A 189, 437 (1993).

    Article  ADS  Google Scholar 

  10. D. Enskog, K. Sven. Vetenskapsaked, Handl. 63, 4 (1922).

    Google Scholar 

  11. H. Caram & D. C. Hong, Phys. Rev. Lett., 67, 828 (1991); Mod. Phys. Lett. B 6, 761 (1992); For earlier development, see J. Litwinyszyn, Bull. Acad. Polon. Sci., Ser. Sci. Tech. 11, 61 (1963); W. W. Mullins, J. Appl. Phys. 43, 665 (1972).

    Article  ADS  Google Scholar 

  12. T. L. Hill, Statistical Mechanics, Chap.8, New York, Dover (1985).

    Google Scholar 

  13. P. Quinn and D. C. Hong, cond-matt/9901113 (To appear in Physica A, 1999).

    Google Scholar 

  14. S. F. Edwards and R. B. S. Oakeshott, Physica A 157, 1080 (1989); A. Mehta and S. F. Edwards, Physica A (Amsterdam) 168, 714 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  15. For other thermodynamic theories of grains, see: B. Bernu, F, Delyon,and R. Mazighi, Phys. Rev. E 50, 4551 (1994); J. J. Brey, F. Moreno, and J. W. Dufty, Phys. Rev. E 54, 445 (1996).

    Article  ADS  Google Scholar 

  16. Nowak et al. used such a fluctuation formula to experimentally measure the compactivity of the excited grains. See: E. R. Nowak, J. B. Knight, E. Ben-Naim, H. M. Jaeger and S. R. Nagel, Density Fluctuations in Vibrated Granular Materials, Phys. Rev. E 57, 1971–1982 (1998).

    Google Scholar 

  17. Jysoo Lee, cond-mat/9606013; S. Luding, E. Clément, A. Blumen, J. Rajchenbach, and J. Duran, Phys. Rev. E. 50 R1762 (1994).

    Article  ADS  Google Scholar 

  18. F. R. Ree and W. G. Hoover, J. Chem. Phys. 40, 939 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  19. N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635 (1969).

    Article  ADS  Google Scholar 

  20. A. Kudrolli, M. Wolpert and J. P. Gollub, Phys. Rev. Lett. 78, 1383 (1997).

    Article  ADS  Google Scholar 

  21. J. S. Olafsen and J. S. Urbach, Phys. Rev. Lett. 81, 4369 (1998); J. Delour, A. Kudrolli, and J. Gollub, cond-matt/9806366; J. Delour, A. Kudrolli, and J. Gollub, cond-matt/9901203.

    Article  ADS  Google Scholar 

  22. E. Grossman, T. Zhou, and E. Ben-Naim, cond-matt/9607165.

    Google Scholar 

  23. P. Haff, J. Fluid. Mech. vol. 134, 401 (1983).

    Article  MATH  ADS  Google Scholar 

  24. B. J. Alder, W. G. Hoover, and D. A. Young, J. Chem. Phys. 49, No.8, 3688 (1968).

    Article  ADS  Google Scholar 

  25. S. Luding, Models and simulations of granular materials, Ph.D thesis, Albert-Ludwigs Universät Freiburg, Germany (1994). See Fig.19.

    Google Scholar 

  26. For Appolonian packing, see B. Mandelbrot, “The Fractal Geometry of nature,”(W. H. Freeman and Company, New York, 1982).

    MATH  Google Scholar 

  27. The 2D simulation results by Luding and Strauß (S. Luding and O. Strauß, The equation of state for almost elastic, smooth, polydisperse granular gases for arbitrary density, (in this volume, page 389)) in this book are not inconsistent with our scenario. See Fig.9 (curve IV) and Fig.10 of their paper for the formation of the “Fermi rectangle” near the bottom layer. Note that in the paper by Luding and Strauß, a ensity is obtained where a disorder-order transition occurs which is noteably smaller than the maximum, close packed density. For other MD simulations for dense granular gases, see also, P. Sunthar and V. Kumaran, Phys. Rev. E. 60, 1951 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hong, D.C. (2001). Effect of Excluded Volume and Anisotropy on Granular Statistics: “Fermi Statistics” and Condensation. In: Pöschel, T., Luding, S. (eds) Granular Gases. Lecture Notes in Physics, vol 564. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44506-4_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-44506-4_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41458-2

  • Online ISBN: 978-3-540-44506-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics