Skip to main content

The Infinite Versions of LogSpace ≠ P Are Consistent with the Axioms of Set Theory

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2000 (MFCS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1893))

  • 494 Accesses

Abstract

We consider the infinite versions of the usual computational complexity questions LogSpace ≟ P, NLogSpace ≟ P by studying the comparison of their descriptive logics on infinite partially ordered structures rather than restricting ourselves to finite structures. We show that the infinite versions of those famous class separation questions are consistent with the axioms of set theory and we give a sufficient condition on the complexity classes in order to get other such relative consistency results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abiteboul, M.Y. Vardi, and V. Vianu, Fixpoint logics, relational machines, and computational complexity, Proceedings of the 7th IEEE Symposium on Logic in Computer Science, 1992, pp. 156–168.

    Google Scholar 

  2. H.-D. Ebbinghaus and J. Flum, Finite model theory, Springer-Verlag, Berlin, 1995.

    MATH  Google Scholar 

  3. P. Erdős, A. Hajnal, A. Máté, and R. Rado, Combinatorial set theory: Partition relations for cardinals, North-Holland, Amsterdam, 1975.

    Google Scholar 

  4. L. Fortnow, S. Kurtz, and D. Whang, The infinite version of an open communication complexity problem is independent of the axioms of set theory, SIGACT News 25 (1994), no. 1, 87–89.

    Article  Google Scholar 

  5. M. Furst, J. Saxe, and M. Sipser, Parity, circuits and the polynomial time hierarchy, Mathematical Systems Theory 17 (1984), 13–27.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Goldstern and S. Shelah, A partial order where all monotone maps are definable, Fundamenta Mathematicae 152 (1997), 255–265.

    MATH  MathSciNet  Google Scholar 

  7. -, Order polynomially complete lattices must be large, Algebra Universalis (1998), to appear.

    Google Scholar 

  8. Y. Gurevich and S. Shelah, Fixed-point extensions of first-order logic, Annals of Pure and Applied Logic 32 (1986), 265–280.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. D. Hamkins and A. Lewis, Infinite time turing machines, preprint, June 1997.

    Google Scholar 

  10. T. Jech, Set theory, Academic Press, New York, 1978.

    Google Scholar 

  11. A. Kanamori, The higher infinite, Springer Verlag, 1994.

    Google Scholar 

  12. A. Kanamori and M. Magidor, The evolution of large cardinal axioms in set theory, Higher Set Theory Gert H. Muller and Dana S. Scott, eds., Lecture Notes in Mathematics, vol. 669, Springer Verlag, Berlin, 1978, pp. 99–275.

    Chapter  Google Scholar 

  13. A. Miller, On the length of Borel hierarchies, Annals of Mathematical Logic 16 (1979), 233–267.

    Article  MATH  MathSciNet  Google Scholar 

  14. W. Richter, Recursively mahlo ordinals and inductive definitions, Logic Colloquium’ 69 R. O. Gandy and C. E. M. Yates, (eds.), North-Holland, 1971, pp. 273-288.

    Google Scholar 

  15. M. Sipser, Borel sets and circuit complexity, Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 1983, pp. 61–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lafitte, G., Mazoyer, J. (2000). The Infinite Versions of LogSpace ≠ P Are Consistent with the Axioms of Set Theory. In: Nielsen, M., Rovan, B. (eds) Mathematical Foundations of Computer Science 2000. MFCS 2000. Lecture Notes in Computer Science, vol 1893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44612-5_46

Download citation

  • DOI: https://doi.org/10.1007/3-540-44612-5_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67901-1

  • Online ISBN: 978-3-540-44612-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics