Skip to main content

Mining Oblique Data with XCS

  • Conference paper
  • First Online:
Advances in Learning Classifier Systems (IWLCS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1996))

Included in the following conference series:

Abstract

The classifier system XCS was investigated for data mining applications where the dataset discrimination surface (DS) is generally oblique to the attribute axes. Despite the classifiers’ hyper-rectangular predicates, XCS reached 100% performance on synthetic problems with diagonal DS’s and, in a train/test experiment, competitive performance on the Wisconsin Breast Cancer dataset. Final classifiers in an extended WBC learning run were interpretable to suggest dependencies on one or a few attributes. For data mining of numeric datasets with partially oblique discrimination surfaces, XCS shows promise from both performance and pattern discovery viewpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99). Morgan Kaufmann: San Francisco, CA, 1999.

    Google Scholar 

  2. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998. http://www.ics.uci.edu/~mlearn/MLRepository.html.

  3. Martin V. Butz and Stewart W. Wilson. An algorithmic description of XCS. This volume.

    Google Scholar 

  4. John H. Holmes. Discovering Risk of Disease with a Learning Classifier System. In Thomas Bäck, editor, Proceedings of the 7th International Conference on Genetic Algorithms (ICGA97). Morgan Kaufmann: San Francisco CA, 1997.

    Google Scholar 

  5. Tim Kovacs. XCS classifier system reliably evolves accurate, complete, and minimal representations for boolean functions. In Roy, Chawdhry, and Pant, editors, Soft Computing in Engineering Design and Manufacturing, pages 59–68. Springer-Verlag, London, 1997.

    Google Scholar 

  6. Tim Kovacs. Deletion schemes for classifier systems. In Banzhaf et al. [1], pages 329–336.

    Google Scholar 

  7. Pier Luca Lanzi. Extending the representation of classifier conditions. Part II: From messy coding to S-expressions. In Banzhaf et al. [1], pages 345–352.

    Google Scholar 

  8. Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors. Learning Classifier Systems: From Foundations to Applications, volume 1813 of LNAI. Springer-Verlag, Berlin, 2000.

    Google Scholar 

  9. Shaun Saxon and Alwyn Barry. XCS and The Monk’s Problems. In Lanzi et al. [8], pages 223–242.

    Google Scholar 

  10. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press/Bradford Books, Cambridge, MA, 1998.

    Google Scholar 

  11. Sebastian B. Thrun et al. The monk’s problems: A performance comparison of different learning algorithms. Technical Report CMU-CS-91-197, Carnegie Mellon University, Pittsburgh, PA, 1991.

    Google Scholar 

  12. Stewart W. Wilson. ZCS: A zeroth level classifier system. Evolutionary Computation, 2(1):1–18, 1994.

    Article  Google Scholar 

  13. Stewart W. Wilson. Classifier fitness based on accuracy. Evolutionary Computation, 3(2):149–175, 1995.

    Article  Google Scholar 

  14. Stewart W. Wilson. Generalization in the XCS classifier system. In John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors, Genetic Programming 1998: Proceedings of the Third Annual Conference, pages 665–674. Morgan Kaufmann: San Francisco, CA, 1998.

    Google Scholar 

  15. Stewart W. Wilson. Get Real! XCS with Continuous-Valued Inputs. In Lanzi et al. [8], pages 209–220.

    Google Scholar 

  16. Stewart W. Wilson. State of XCS Classifier System Research. In Lanzi et al. [8], pages 63–82.

    Google Scholar 

  17. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco, CA, 2000.

    Google Scholar 

  18. W. H. Wolberg and O. L. Mangasarian. Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proceedings of the National Academy of Sciences, 87:9193–9196, 1990.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wilson, S.W. (2001). Mining Oblique Data with XCS. In: Luca Lanzi, P., Stolzmann, W., Wilson, S.W. (eds) Advances in Learning Classifier Systems. IWLCS 2000. Lecture Notes in Computer Science(), vol 1996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44640-0_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-44640-0_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42437-6

  • Online ISBN: 978-3-540-44640-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics