Skip to main content

Evidence for phase transitions of aqueous gelatin gels in a centrifugal field

  • Conference paper
  • First Online:
Analytical Ultracentrifugation VI

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 119))

Abstract

Experimental findings of turbid zones in the schlieren patterns of gels in a centrifugal field are explained by a demixing of gels into a highly swollen gel coexisting with a collapsed gel. The thermodynamic analysis of a slightly cross-linked aqueous gel at relatively low centrifugal field, which remains clear, leads to the conclusion that the system is close to its stability limit. A procedure is proposed to show how the stability limits may be extrapo lated by means of ultracentrifugal measurements. The phenomena are separated into a transient and a permanent demixing. The permanent demixing has been qualitatively explained by use of state diagrams predicted recently by Khokhlov and coworkers, Ilavsky and also by Moerkerke et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boetger H, Doty P (1958) J Phys Chem 58:1246

    Google Scholar 

  2. Pezron I, Herning T, Djabourov M, Leblond J (1990) In: Burchard W, Ross-Murphy SB (eds) Physical networks, polymers and gels. Elsevier, London, p 231

    Google Scholar 

  3. Bohidar HB (1998) Int J Biol Macromol 23:1

    Article  CAS  Google Scholar 

  4. Pouradier J, Venet AM (1950) J Chim Phys Phys-Chim Biol 47:391

    CAS  Google Scholar 

  5. Borchard W, Keese A (1979) 26th IUPAC symposium on macromolecules, Mainz, Germany, vol II, p 888

    Google Scholar 

  6. Meerson ST, Lipatov SM (1958) Colloid J USSR 20:336

    Google Scholar 

  7. Borchard W, Bergmann K, Rehage G, Cox RJ (eds) (1976) Investigation of gelation phenomena in aqueous gelatin solutions. Photographic gelatin II. Academic, London, p 57

    Google Scholar 

  8. Godard P, Biebuyck JJ, Daumerie M, Naveau H, Mercier JP (1978) J Polym Sci Polym Chem Ed 16:1817

    CAS  Google Scholar 

  9. Borchard W, Bremer W, Keese A (1980) Colloid Polym Sci 258:516

    Article  CAS  Google Scholar 

  10. Borchard W, Luft B, Reutner P (1984) Ber Bunsenges Phys Chem 88:1010

    CAS  Google Scholar 

  11. Reutner P, Luft B, Borchard W (1985) Colloid Polym Sci 263:519

    Article  CAS  Google Scholar 

  12. Borchard W, Luft B, Reutner P (1986) J Photogr Sci 34:132

    CAS  Google Scholar 

  13. Johnson P (1964) Proc R Soc Lond Ser A 278:527

    Article  Google Scholar 

  14. Johnson P, Metcalfe JC (1967) Eur Polym J 3:423

    Article  CAS  Google Scholar 

  15. Johnson P, King RW (1968) J Photogr Sci 16:82

    CAS  Google Scholar 

  16. Johnson P (1971) J Photogr Sci19:49

    CAS  Google Scholar 

  17. Holtus G, Borchard W (1989) Colloid Polym Sci 267:1133

    Article  CAS  Google Scholar 

  18. Holtus G, Cölfen H, Borchard W (1991) Prog Colloid Polym Sci 86:92

    Article  CAS  Google Scholar 

  19. Borchard W(1991) Prog Colloid Polym Sci 86:84

    Google Scholar 

  20. Cölfen H, Borchard W (1991) Prog Colloid Polym Sci 86:102

    Article  Google Scholar 

  21. Borchard W, Cölfen H (1992) Macromol Chem Macromol Symp 61:143

    CAS  Google Scholar 

  22. Borchard W (1994) Prog Colloid Polym Sci 94:82

    Article  CAS  Google Scholar 

  23. Cölfen H, Borchard W (1994) Acta Polym45:325

    Article  Google Scholar 

  24. Cölfen H, Borchard W (1994) Prog Colloid Polymer Sci 94:90

    Article  Google Scholar 

  25. Cölfen H, Borchard W (1994) Anal Biochem 219:321

    Article  Google Scholar 

  26. Cölfen H, Borchard W (1994) SPIE Proc 2136:307

    Article  Google Scholar 

  27. Cölfen H, Borchard W (1994) Macromol Chem Phys 195:1165

    Article  Google Scholar 

  28. Cölfen H, Borchard W (1995) Macromol Chem Phys 196:3469

    Article  Google Scholar 

  29. Hinsken H, Borchard W (1995) Colloid Polym Sci 273:913–925

    Article  CAS  Google Scholar 

  30. Hinsken H, Selic E, Borchard W (1995) Prog Colloid Polym Sci 99:154–161

    Article  CAS  Google Scholar 

  31. Borchard W, Hinsken H (1997) Prog Colloid Polym Sci 107:172–179

    Article  CAS  Google Scholar 

  32. Borchard W, Selic E (1997) In: Pethrick RA, Dawkins JV (eds) Experimental methods in polymer characterisation, vol 1. Wiley, Chichester, pp 317

    Google Scholar 

  33. Hermanns B, Borchard W, Rehage G (1974) Angew Makromol Chem 36:117

    Article  CAS  Google Scholar 

  34. Borchard W, Emberger A, Schwarz J (1978) Angew Makromol Chem 66:43

    Article  CAS  Google Scholar 

  35. Smith CR (1919) Am Chem Soc 41:135

    Article  CAS  Google Scholar 

  36. Flory PJ, Weaver ES (1960) J Am Chem Soc 82:4518

    Article  CAS  Google Scholar 

  37. Todd A (1961) Nature 191:567

    Article  CAS  Google Scholar 

  38. Engel J (1962) Arch Biochem Biophys 97:150

    Article  CAS  Google Scholar 

  39. Djabourov M, Leblond J, Papon P (1988) J Phys 49:319

    CAS  Google Scholar 

  40. Burg B, Borchard W (1989) Integration of fundamental polymer science and technology, Rolduc meeting III. Elsevier, London, p 100

    Google Scholar 

  41. Borchard W, Burg B (1989) In: Baumgärtner, A, Picot C (eds) Molecular basis of polymer networks. Proceedings in physics, vol 42. Springer, Berlin Heidelberg New York, p 162

    Google Scholar 

  42. Borchard W, Burg B (1990) Prog Colloid Polym Science 83:200

    Article  CAS  Google Scholar 

  43. Stauffer D, Coniglio A, Adam M (1982) Adv Polym Sci 44:103

    Article  CAS  Google Scholar 

  44. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  45. Borchard W (1998) Ber Bunsenges Phys Chem 102:1580

    CAS  Google Scholar 

  46. Guenet JM (1992) Thermoreversible gelation of polymers and biopolymers. Academic, New York

    Google Scholar 

  47. te Nijenhuis K (1997) Thermoreversible networks. Advances in polymer science, vol 130. Springer, Berlin Heidelberg New York

    Google Scholar 

  48. Staverman AJ, van Santen JM (1941) Recl Trav Chim Pays-Bas 60:76

    CAS  Google Scholar 

  49. Huggins ML (1943) Ann NY Acad Sci 44:431

    Article  CAS  Google Scholar 

  50. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  51. Svedberg T, Pedersen KO (1940) The ultracentrifuge. Oxford University Press, Oxford, pp 29–33

    Google Scholar 

  52. Metcalfe JC (1965) PhD thesis. Cambridge

    Google Scholar 

  53. Holtus G (1990) Doctoral thesis. Duisburg

    Google Scholar 

  54. Cölfen H (1993) Doctoral thesis. Duisburg (1994)

    Google Scholar 

  55. Cölfen H (1999) Biotechnol Genet Eng Rev 16:133

    Google Scholar 

  56. Kisters D (2001) Doctoral thesis. Duisburg

    Google Scholar 

  57. Dusek K, Patterson DJ (1968) J Polym Sci A-26:1209

    Google Scholar 

  58. Dusek K, Prins W (1969) Adv Polym Sci 6:1

    Article  CAS  Google Scholar 

  59. Moerkerke R, Koningsveld R, Berghmans H, Dusek K, Solè K (1995) Macromolecules 28:1103

    Article  CAS  Google Scholar 

  60. Khokhlov AR (1980) Polymer 21:376

    Article  CAS  Google Scholar 

  61. Grosberg A Yu, Khokhlov AR (1994) Statistical physics of macromolecules. Nauka, Moscow (English translation AIP, New York)

    Google Scholar 

  62. Kramarenko E Yu, Khokhlov AR (1998) Polym Gels Networks 6:45

    Article  CAS  Google Scholar 

  63. Khokhlov A, Starodubtzer SG, Vasilevskaya VV (1993) Adv Polym Sci 106:123

    Google Scholar 

  64. Sibayamy M, Tanaka T (1993) Adv Polym Sci 109:1

    Google Scholar 

  65. Onuki A (1993) Adv Polym Sci 106:63

    Google Scholar 

  66. Ilavsky M(1993) Adv Polym Sci 106:173

    Google Scholar 

  67. Haase R (1956) Thermodynamik der Mischphasen. Springer, Berlin Heidelberg New York

    Google Scholar 

  68. Scholte ThG (1970) J Polym Sci A-28:841

    Google Scholar 

  69. Scholte ThG(1970) Eur Polym J 6:51

    Google Scholar 

  70. Borchard (1972) Ber Bunsenges Phys Chem 76:224

    CAS  Google Scholar 

  71. Borchard W, Holtus G (1989) Colloid Polym Sci 267:1127

    Article  CAS  Google Scholar 

  72. Haase R (1963) Thermodynamik der irreversiblen Prozesse. Steinkopff, Dresden

    Google Scholar 

  73. Cölfen H (1995) Colloid Polym Sci 273:1101

    Article  Google Scholar 

  74. Rehage G (1959) Symposium über Makromoleküle Wiesbaden IIA15

    Google Scholar 

  75. Rehage G (1964) Kolloid Z Z Polym 196:97

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. Borchard A. Straatmann

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this paper

Cite this paper

Borchard, W., Cölfen, H., Kisters, D., Straatmann, A. (2002). Evidence for phase transitions of aqueous gelatin gels in a centrifugal field. In: Borchard, W., Straatmann, A. (eds) Analytical Ultracentrifugation VI. Progress in Colloid and Polymer Science, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44672-9_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-44672-9_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42489-5

  • Online ISBN: 978-3-540-44672-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics