Skip to main content

Matching Free Trees, Maximal Cliques, and Monotone Game Dynamics

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2134))

Abstract

It is well known that the problem of matching two relational structures can be posed as an equivalent problem of finding a maximal clique in a (derived) association graph. However, it is not clear how to apply this approach to computer vision problems where the graphs are connected and acyclic, i.e. are free trees, since maximal cliques are not constrained to preserve connectedness. Motivated by our recent work on rooted tree matching, in this paper we provide a solution to the problem of matching two free trees by constructing an association graph whose maximal cliques are in one-to-one correspondence with maximal subtree isomorphisms. We then solve the problem using simple payoff-monotonic dynamics from evolutionary game theory. We illustrate the power of the approach by matching articulated and deformed shapes described by shape-axis trees. Experiments on hundreds of larger (random) trees are also presented. The results are impressive: despite the inherent inability of these simple dynamics to escape from local optima, they always returned a globally optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. P. Ambler, H. G. Barrow, C. M. Brown, R. M. Burstall, and R. J. Popplestone. A versatile computer-controlled assembly system. In Proc. 3rd Int. J. Conf. Artif. Intell., pages 298–307, Stanford, CA, 1973.

    Google Scholar 

  2. D. H. Ballard and C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, NJ, 1982.

    Google Scholar 

  3. M. Bartoli, M. Pelillo, K. Siddiqi, and S. W. Zucker. Attributed tree homomor-phism using association graphs. In Proc. ICPR’2000-15th Int. Conf. Pattern Recognition, volume 2, pages 133–136, Barcelona, Spain, 2000.

    Article  Google Scholar 

  4. H. Blum and R. N. Nagel. Shape description using weighted symmetric axis features. Pattern Recognition, 10:167–180, 1978.

    Article  MATH  Google Scholar 

  5. I. M. Bomze. Evolution towards the maximum clique. J. Global Optim., 10:143–164, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  6. I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique problem. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization (Suppl. Vol. A), pages 1–74. Kluwer, Boston, MA, 1999.

    Google Scholar 

  7. I. M. Bomze, M. Pelillo, and R. Giacomini. Evolutionary approach to the maximum clique problem: Empirical evidence on a larger scale. In I. M. Bomze, T. Csendes, R. Horst, and P. M. Pardalos, editors, Developments in Global Optimization, pages 95–108. Kluwer, Dordrecht, The Netherlands, 1997.

    Google Scholar 

  8. I. M. Bomze, M. Pelillo, and V. Stix. Approximating the maximum weight clique using replicator dynamics. IEEE Trans. Neural Networks, 11(6):1228–1241, 2000.

    Article  Google Scholar 

  9. A. Cabrales and J. Sobel. On the limit points of discrete selection dynamics. J. Econom. Theory, 57:407–419, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  10. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, MA, 1991.

    Google Scholar 

  11. P. Dimitrov, C. Phillips, and K. Siddiqi. Robust and efficient skeletal graphs. In Proc. CVPR’2000—IEEE Conf. Comput. Vision Pattern Recognition, Hilton Head, SC, 2000.

    Google Scholar 

  12. D. Fudenberg and D. K. Levine. The Theory of Learning in Games. MIT Press, Cambridge, MA, 1998.

    MATH  Google Scholar 

  13. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco, CA, 1979.

    MATH  Google Scholar 

  14. A. Gaunersdorfer and J. Hofbauer. Fictitious play, Shapley polygons, and the replicator equation. Games Econom. Behav., 11:279–303, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.

    Google Scholar 

  16. J. Hofbauer. Imitation dynamics for games. Collegium Budapest, preprint, 1995.

    Google Scholar 

  17. J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge, UK, 1998.

    MATH  Google Scholar 

  18. T.-L. Liu and D. Geiger. Approximate tree matching and shape similarity. In Proc. ICCV’99—7th Int. Conf. Computer Vision, pages 456–462, Kerkyra, Greece, 1999.

    Google Scholar 

  19. T.-L. Liu, D. Geiger, and R. V. Kohn. Representation and self-similarity of shapes. In Proc. ICCV’98—6th Int. Conf. Computer Vision, pages 1129–1135, Bombay, India, 1998.

    Google Scholar 

  20. J. Maynard Smith. Evolution and the Theory of Games. Cambridge University Press, Cambridge, UK, 1982.

    MATH  Google Scholar 

  21. D. Miller and S. W. Zucker. Efficient simplex-like methods for equilibria of non-symmetric analog networks. Neural Computation, 4(2):167–190, 1992.

    Article  Google Scholar 

  22. D. Miller and S. W. Zucker. Computing with self-excitatory cliques: A model and an application to hyperacuity-scale computation in visual cortex. Neural Computation, 11(1):21–66, 1999.

    Article  Google Scholar 

  23. T. S. Motzkin and E. G. Straus. Maxima for graphs and a new proof of a theorem of Turán. Canad. J. Math., 17:533–540, 1965.

    MATH  MathSciNet  Google Scholar 

  24. M. Pelillo. Relaxation labeling networks for the maximum clique problem. J. Artif. Neural Networks, 2:313–328, 1995.

    Google Scholar 

  25. M. Pelillo. Replicator equations, maximal cliques, and graph isomorphism. Neural Computation, 11(8):2023–2045, 1999.

    Article  Google Scholar 

  26. M. Pelillo and A. Jagota. Feasible and infeasible maxima in a quadratic program for maximum clique. J. Artif. Neural Networks, 2:411–420, 1995.

    Google Scholar 

  27. M. Pelillo, K. Siddiqi, and S. W. Zucker. Matching hierarchical structures using association graphs. IEEE Trans. Pattern Anal. Machince Intell., 21(11):1105–1120, 1999.

    Article  Google Scholar 

  28. M. Pelillo, K. Siddiqi, and S. W. Zucker. Many-to-many matching of attributed trees using association graphs and game dynamics. In C. Arcelli, L. P. Cordella, and G. Sanniti di Baja, editors, Visual Form 2001, pages 583–593. Springer, Berlin, 2001.

    Chapter  Google Scholar 

  29. S. W. Reyner. An analysis of a good algorithm for the subtree problem. SI AM J. Comput., 6:730–732, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  30. J. W. Weibull. Evolutionary Game Theory. MIT Press, Cambridge, MA, 1995.

    MATH  Google Scholar 

  31. H. Wilf. The uniform selection of free trees. J. Algorithms, 2:204–207, 1981.

    Article  MathSciNet  Google Scholar 

  32. S. C. Zhu and A. L. Yuille. FORMS: A flexible object recognition and modeling system. Int. J. Computer Vision, 20(3):187–212, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pelillo, M. (2001). Matching Free Trees, Maximal Cliques, and Monotone Game Dynamics. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2001. Lecture Notes in Computer Science, vol 2134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44745-8_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-44745-8_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42523-6

  • Online ISBN: 978-3-540-44745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics