Skip to main content

Post-synaptic Time-dependent Conductances in Spiking Neurons: FPGA Implementation of a Flexible Cell Model

  • Conference paper
  • First Online:
Artificial Neural Nets Problem Solving Methods (IWANN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2687))

Included in the following conference series:

Abstract

This work presents a flexible reconfigurable approach to a bioinspired spiking neuron. The main objective of this contribution is to evaluate the silicon cost of the implementation of lime-dependent conductances in spiking neurons. The design presented here has been defined using a high level Hardware Description Language (HDL). This facilitates the extraction of simulation results, and the easy change of the circuit. The paper discusses how different aspects of lime-dependent conductances can be particularized in the circuit, and Iheir hardware requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. SpikeFORCE: Real-Time Spiking Networks for Robot Control. (EU Project: TST-2001-35271). http://www.spikeforce.org

  2. Jahnke, A.; Schoenauer, T.; Roth, U.; Mohraz, K.; Klar, H.: Simulation of Spiking Neural Networks on Different Hardware Platforms. ICANN97, (Springer-Verlag), LCNS, pp. 1187–1192(1997)

    Google Scholar 

  3. Schoenauer, T.; Alasoy, S.; Mehrlash, N.; Klar, H.: NeuroPipe-Chip: A Digital Neuro-Processor for Spiking Neural Networks, TEEE Trans. Neu. Net., 13(1), pp. 205–213, (2002)

    Article  Google Scholar 

  4. Hartmann, G.; Frank, G.; Schafer, M.; Wolff, C: SPIKE128K-An Accelerator for Dynamic Simulation of Large Pulse-Coded Networks, MicroNeuro97, (1997)

    Google Scholar 

  5. Opher, L; Horn, D.; Quenel, B.: Clustering with spiking neurons, TCANN’99, LCNS (Springer-Verlag), pp. 485–490, Edinburgh, (1999)

    Google Scholar 

  6. Hopfield, J.J.; Pattern recognition computation using action potential timing for stimulus representation, Nature, 376, pp. 33–36, (1995)

    Article  Google Scholar 

  7. Rochel, O.; Martinez, D.; Hugues, E.; Sarry, F.: Slereo-olfaclion with a sniffing neuromorphic robot using spiking neurons, Eurosensors, (2002)

    Google Scholar 

  8. Delorme, A.; Thorpe, S.J.: Face identification using one spike per neuron: resistance to image degradations, Neural Networks, 14(6–7), pp. 795–804, (2001)

    Article  Google Scholar 

  9. Smith, L.S.: A one-dimensional frequency map implemented using a network of integrale-and-fire neurons. TCANN98, (Springer-Verlag), LCNS pp. 991–996, (1998)

    Google Scholar 

  10. Pelayo, F.J.; Romero, S.; Morillas, C.A.; Martinez, A; Ros, E.; Fernandez, E.: Translating image sequences into spike patterns for cortical neuro-stimulation. To be pusblished at the proceeding of the CNS’2003, Alicante, Spain, (2003)

    Google Scholar 

  11. Ros, E.; Pelayo, F.J.; Rojas, L; Fernandez, F.J.; Prielo, A.: A VLSI approach for spike liming coding, LNCS, (Springer-Verlag), 1629, 610–620, (1999)

    Google Scholar 

  12. Christodoulou, C; Bugmann, G.; Clarkson, T.G.: A spiking neuron model: applications and learning, Neural Networks, 15, (7), pp. 891–908, (2002)

    Article  Google Scholar 

  13. Gerstner, W., Kistler, W.: Spiking Neuron Models. Cambridge University Press, (2002)

    Google Scholar 

  14. Eckhorn, R.; Bauer, R.; Jordan, W.; Brosh, M.; Krase, W.; Munk, M.; Reitbock: Coherent oscillations: A mechanism of feature linking in the visual cortex? Biol. Cyber. 60, pp. 121–130,(1988)

    Article  Google Scholar 

  15. Walts, L.: Event-driven simulation of networks of spiking neurons. Advances in Neural Information Processing Systems, Vol. 6, pp. 927–934, (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ros, E., Agis, R., Carrillo, R.R., Ortigosa, E.M. (2003). Post-synaptic Time-dependent Conductances in Spiking Neurons: FPGA Implementation of a Flexible Cell Model. In: Mira, J., Álvarez, J.R. (eds) Artificial Neural Nets Problem Solving Methods. IWANN 2003. Lecture Notes in Computer Science, vol 2687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44869-1_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-44869-1_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40211-4

  • Online ISBN: 978-3-540-44869-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics