Skip to main content

A Levelset Based Method for Segmenting the Heart in 3D+T Gated SPECT Images

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2674))

Included in the following conference series:

Abstract

Levelset methods were introduced in medical images segmentation by Malladi et al. in 1995. In this paper, we propose several improvements of the original method to speed up the algorithm convergence and to improve the quality of the segmentation in the case of cardiac gated SPECT images.

We studied several evolution criterions, taking into account the dynamic property of heart image sequences. For each step of the segmentation algorithm, we have compared different solutions in order to both reduce time and improve quality.

We have developed a modular segmentation tool with 3D+T visualization capabilities to experiment the proposed solutions and tune the algorithm parameters. We show segmentation results on both simulated and real SPECT images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Caselles, F. Catte, T. Coll, and F. Dibos. A geometric model for active contours in image processing. In Numerische Mathematik, volume 66, pages 1–33, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  2. V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. International Journal of Computer Vision, 22(1):61–79, 1997.

    Article  MATH  Google Scholar 

  3. L.D. Cohen and Isaac Cohen. Finite element methods for active contour models and balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI, 15, November 1993.

    Google Scholar 

  4. L.D. Cohen and Ron Kimmel. Global minimum for active contour models: A minimal path approach. Int. J. of Computer Vision, 24(1):57–78, 1997.

    Article  Google Scholar 

  5. E. Debreuve, M. Barlaud, G. Aubert, I. Laurette, and J. Darcourt. Space time segmentation using level set active contours applied to myocardial gated spect. In International Conference on Medical Imaging (MIC99), Vancouver, Octobre 1999.

    Google Scholar 

  6. J. Gomes and O.D. Faugeras. Reconciling Distance Functions and Level Sets. Journal of Visual Communication and Image Representation, 11:209–223, 2000.

    Article  Google Scholar 

  7. S. Jehan-Besson, M. Barlaud, and G. Aubert. A 3-step algorithm using region-based active contours for video objects detection. EURASIP Journal of Applied Signal Processing, 2002(6):572–581, 2002.

    Article  Google Scholar 

  8. M. Kass, A. Witkin, and D. Terzopoulos. SNAKES: Active contour models. International Journal of Computer Vision, 1:321–332, January 1988.

    Article  Google Scholar 

  9. R. Malladi, J. A. Sethian, and B.C. Vemuri. Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2):158–175, February 1995.

    Article  Google Scholar 

  10. J. Montagnat and H. Delingette. A review of deformable surfaces: topology, geometry and deformation. Image and Vision Comput., 19(14):1023–1040, Dec. 2001.

    Article  Google Scholar 

  11. S. Osher and J. Sethian. Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation. Journal of Computational Physics, 79:12–49, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  12. Nikos Paragios and Rachid Deriche. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(3):266–280, March 2000.

    Article  Google Scholar 

  13. P.H. Pretorius, W. Xia, M. A. King, B. M. W. Tsui, T.-S. Pan, and B.J. Villegas. Determination of left and right ventricular volume and ejection fraction using a mathematical cardiac torso phantom for gated blood pool spect. Journal of Nuclear Medicine, 37:97, 1996.

    Google Scholar 

  14. M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Physics, 114:146–159, 1994.

    Article  MATH  Google Scholar 

  15. D. Terzopoulos, A. Witkin, and M. Kass. Constraints on deformable models: Recovering 3d shape and non rigid motion. Artificial Intelligence, 36(1):91–123, 1988.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Charnoz, A., Lingrand, D., Montagnat, J. (2003). A Levelset Based Method for Segmenting the Heart in 3D+T Gated SPECT Images. In: Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2003. Lecture Notes in Computer Science, vol 2674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44883-7_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-44883-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40262-6

  • Online ISBN: 978-3-540-44883-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics