Skip to main content

Aerial Spray Deposition Management Using the Genetic Algorithm

  • Conference paper
  • First Online:
Intelligent Problem Solving. Methodologies and Approaches (IEA/AIE 2000)

Abstract

The AGDISP Aerial Spray Simulation Model is used to predict the deposition of spray material released from an aircraft. The prediction is based on a well-defined set of input parameter values (e.g., release height, and droplet size) as well as constant data (e.g., aircraft and nozzle type). But, for a given deposition, what are the optimal parameter values? We use the popular Genetic Algorithm to heuristically search for an optimal or near-optimal set of input parameters needed to achieve a certain aerial spray deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachant, J., and J. McDermott (1984). “R1 Revisited: Four Years in the Trenches” in AI Magazine, Vol. 5, No. 3.

    Google Scholar 

  2. Bilanin, A. J., M. E. Teske, J. W. Barry and R. B. Ekblad (1989). “AGDISP: The Aircraft Spray Dispersion Model, Code Development and Experimental Validation” in Transactions of the ASAE 32(1):327–334.

    Google Scholar 

  3. Chandrasekaran, B., and S. Mittal (1983). “Deep versus Compiled Knowledge Approaches to Diagnostic Problem Solving,” in the International Journal of Man-Machine Studies, Vol. 19, No. 5, pp. 425–436, November.

    Article  Google Scholar 

  4. Chandrasekaran, B. (1991). “Models Versus Rules, Deep Versus Compiled, Content Versus Form” in IEEE Expert, Vol. 6, No. 5, April.

    Google Scholar 

  5. Davis, L., (ed.) (1991). Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York.

    Google Scholar 

  6. Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing Co.

    Google Scholar 

  7. Holland, J.H. (1975). Adaptation in Natural and Artificial Systems, Ann Arbor: The University of Michigan Press.

    Google Scholar 

  8. Mantelman, L. (1986). “AI Carves Inroads: Network Design, Testing, and Management” in Data Communications, pp. 106–123.

    Google Scholar 

  9. McDermott, J. (1981). “R1: The Formative Years,” in AI Magazine, Vol. 2, No. 2.

    Google Scholar 

  10. Mittal, S., and F. Frayman (1989). “Towards a generic model of configuration tasks” in the Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, Vol. 2, pp. 1395–1401.

    Google Scholar 

  11. Parkin, C.S., and J.C. Wyatt (1982). “The Determination of Flight-Lane Separations for the Aerial Application of Herbicides” in Crop Protection, 1(3), pp. 309–321.

    Article  Google Scholar 

  12. Potter, W.D., J.A. Miller, B.E. Tonn, R.V. Gandham, and C.N. Lapena (1991). “Improving the Reliability of Heuristic Multiple Fault Diagnosis Via The Environmental Conditioning Operator” in the International Journal of Applied Intelligence, vol. 2, pp. 5–23.

    Article  Google Scholar 

  13. Potter, W.D., R. Pitts, P. Gillis, J. Young, and J. Caramadre (1992) “IDA-NET: An Intelligent Decision Aid for Battlefield Communication Network Configuration” in the Proceedings of the Eighth IEEE Conference on Artificial Intelligence for Applications (CAIA’92), pp. 247–253.

    Google Scholar 

  14. Teske, M.E., Curbishley, T.B. (1989), “Forest Service Aerial Spray Computer Model FSCBG 4.0 User Manual” C.D.I. Report No. 90-06.

    Google Scholar 

  15. Teske, M.E., Bowers, J.F., Rafferty, J.E., and Barry, J.W., (1993). “FSCBG: An Aerial Spray Dispersion Model for Predicting the Fate of Released Material Behind Aircraft” in Environmental Toxicology and Chemistry, Vol. 12, pp. 453–464.

    Article  Google Scholar 

  16. Teske, M.E. (1998) “AGDISP DOS Version 7.0 User Manual”.

    Google Scholar 

  17. Teske, M. E., H. W. Thistle and B. Eav. (1998) “New Ways to Predict Aerial Spray Deposition and Drift” in Journal of Forestry 96(6):25–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Potter, W.D. et al. (2000). Aerial Spray Deposition Management Using the Genetic Algorithm. In: Logananthara, R., Palm, G., Ali, M. (eds) Intelligent Problem Solving. Methodologies and Approaches. IEA/AIE 2000. Lecture Notes in Computer Science(), vol 1821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45049-1_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-45049-1_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67689-8

  • Online ISBN: 978-3-540-45049-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics