Skip to main content

Motion of Objects Through Dilute Bose-Einstein Condensates

  • Chapter
  • First Online:
Quantized Vortex Dynamics and Superfluid Turbulence

Part of the book series: Lecture Notes in Physics ((LNP,volume 571))

Abstract

This paper discusses the motion of objects through quantum fluids described by the Gross Pitaevskii (GP) equation. The object moves without dissipation at velocities below a threshold which corresponds to the critical velocity for vortex nucleation. Above the critical velocity, vortex shedding is the dominant mechanism of energy transfer between the object and the fluid. We compare the predictions of the GP model with experiments on an oscillating laser beam in an alkali vapour Bose Einstein condensate and ions in superfluid helium-4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See e.g. Bose-Einstein condensation in atomic gases, Proc. Int. School of Physics Enrico Fermi, eds. M. Inguscio, S. Stringari and C. Wieman (IOS Press, Amsterdam, 1999).

    Google Scholar 

  2. D. R. Tilley and J. Tilley, Superfluidity and superconductivity, 3rd Ed., (IoP, Bristol, 1990).

    Google Scholar 

  3. V. L. Ginzberg and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 34, 1240 (1958) [Sov. Phys. JETP 7, 858 (1958)]; E. P. Gross, Nuovo Cimento 20, 454 (1961) and J. Math. Phys. 4, 195 (1963).

    Google Scholar 

  4. T. Winiecki, B. Jackson, J. F. McCann, and C. S. Adams, J. Phys. B. 33, 4069 (2000).

    Article  ADS  Google Scholar 

  5. B. Jackson, J. F. McCann, and C. S. Adams, Phys. Rev. Lett. 80, 3903 (1998).

    Article  ADS  Google Scholar 

  6. B. M. Caradoc-Davies, R. J. Ballagh, and K. Burnett, Phys. Rev. Lett. 83, 895 (1999).

    Article  ADS  Google Scholar 

  7. M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 83, 2498 (1999).

    Article  ADS  Google Scholar 

  8. K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).

    Article  ADS  Google Scholar 

  9. C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett. 83, 2502 (1999).

    Article  ADS  Google Scholar 

  10. R. Onofrio, C. Raman, J. M. Vogels, J. Abo-Shaeer, A. P. Chikkatur, and W. Ketterle, preprint, Phys. Rev. Lett. 85, 2228 (2000).

    Article  ADS  Google Scholar 

  11. B. Jackson, J. F. McCann, and C. S. Adams, Phys. Rev. A 61, 051603 (R) (2000).

    Article  ADS  Google Scholar 

  12. T. Frisch, Y. Pomeau, and S. Rica, Phys. Rev. Lett. 69, 1644 (1992).

    Article  ADS  Google Scholar 

  13. T. Winiecki, J. F. McCann, and C. S. Adams, Phys. Rev. Lett. 82, 5186 (1999).

    Article  ADS  Google Scholar 

  14. P. Nozières and D. Pines, Theory of Quantum Liquids Vol II (Addison-Wesley, Redwood City, 1990).

    Google Scholar 

  15. Fluid Mechanics (2nd ed.), L. D. Landau and E. M. Lifshitz (Pergamon, Oxford, 1987).

    MATH  Google Scholar 

  16. C. Huepe and M.-É. Brachet, C. R. Acad. Sci. Paris, 325, Série 2 b, 195 (1997).

    MATH  Google Scholar 

  17. T. Winiecki, J. F. McCann, and C. S. Adams, Europhys. Lett. 48, 475 (1999).

    Article  ADS  Google Scholar 

  18. C. Huepe, M.-É. Brachet, Physica D, 140, 126 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. T. Winiecki and C. S. Adams, Europhys. Lett. 52, 257 (2000).

    Article  ADS  Google Scholar 

  20. N. G. Berlo. and P. H. Roberts, J. Phys. A 33, 4025 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  21. C. Josserand, Y. Pomeau, and S. Rica, Physica D, 134 111 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. S. Rica, Physcia D 148, 221 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Leadbeater, T. Winiecki, D. C. Samuels, C. F. Barenghi, and C. S. Adams, Phys. Rev. Lett. 86 no. 7 to appear (2001)

    Google Scholar 

  24. C. Nore, C. Huepe, and M. E. Brachet, Phys. Rev. Lett. 84, 2191 (2000).

    Article  ADS  Google Scholar 

  25. P. O. Fedichev and G. V. Shlyapnikov, cond-mat/0004430.

    Google Scholar 

  26. P. O. Fedichev and G. V. Shlyapnikov, Phys. Rev. A 60 R1779 (1999).

    Article  ADS  Google Scholar 

  27. B. Jackson, J. F. McCann, and C. S. Adams, Phys. Rev. A 61, 013604 (2000).

    Article  ADS  Google Scholar 

  28. R. J. Donnelly Quantized vortices in Helium II, (CUP, Cambridge, 1991).

    Google Scholar 

  29. N. G. Berlo., J. Low Temp. Phys. 116, 359 (1999).

    Article  Google Scholar 

  30. N. G. Berlo. and P. H. Roberts, J. Phys. A 32, 5611 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  31. N. G. Berlo. and P. H. Roberts, Phys. Lett. A 274, 569 (2000).

    Google Scholar 

  32. R. J. Marshall, G. H. C. New, K. Burnett, and S. Choi, Phys. Rev. A 59, 2085 (1999).

    Article  ADS  Google Scholar 

  33. M. J. Davis, S. A. Morgan and K. Burnett, cond-mat/0011431

    Google Scholar 

  34. M. Leadbeater and C. S. Adams, unpublished

    Google Scholar 

  35. C. M. Muirhead, W. F. Vinen, and R. J. Donnelly, Phil. Trans. R. Soc. Lond. A 311, 433 (1984).

    Article  ADS  Google Scholar 

  36. G. W. Rayfield and F. Reif, Phys. Rev. 136, 1194 (1964).

    Article  ADS  Google Scholar 

  37. G. W. Rayfield, Phys. Rev. Lett. 19, 1371 (1967).

    Article  ADS  Google Scholar 

  38. P. C. Hendry, N. S. Lawson, P. V. E. McClintock, and C. D. H. Williams, Phys. Rev. Lett. 60, 604 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adams, C., Jackson, B., Leadbeater, M., McCann, J., Winiecki, T. (2001). Motion of Objects Through Dilute Bose-Einstein Condensates. In: Barenghi, C.F., Donnelly, R.J., Vinen, W.F. (eds) Quantized Vortex Dynamics and Superfluid Turbulence. Lecture Notes in Physics, vol 571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45542-6_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-45542-6_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42226-6

  • Online ISBN: 978-3-540-45542-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics