Skip to main content

Towards a Method of Searching a Diverse Theory Space for Scientific Discovery

  • Conference paper
  • First Online:
Discovery Science (DS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2226))

Included in the following conference series:

Abstract

Scientists need customizable tools to help them with discovery. We present an adjustable heuristic function for scientific discovery. This function may be considered in either a Minimum Message Length (MML) or a Bayesian Net manner. The function is approximate because the default method of specifying theory prior probabilities is a gross estimate and because there is more to theory choice than maximizing probability. We do, however, effectively capture some user preferences with our technique. We show this for the qualitatively different domains of geophysics and sociology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R.N. 1960. An inquiry into the nature of the family. p 30–49 in Dole, G. and Carneiro, R.L. (eds.), Essays in the Science of Culture: In Honor of Leslie A. White. Thomas Y. Crowell. New York.

    Google Scholar 

  2. Benioff, H., 1948. Earthquakes and rock creep. Geol. Soc. Am. Bull., 59, p. 1391.

    Google Scholar 

  3. Buchanan, B., Phillips, J. 2001. Towards a computational model of hypothesis formation and model building in science. Model Based Reasoning: Scientific Discovery, Technological Innovation, Values. Kluwer.

    Google Scholar 

  4. Casper, L., Bryson, K. 1998. Current Population Reports: Population Characteristics: Household and Family Characteristics. March 1998 (Update). United States Census Bureau.

    Google Scholar 

  5. Cheeseman, P. 1995. On Bayesian model selection. In Wolpert, D. (ed.) The Mathematics of Generalization: Proceedings of teh SFI/CNLS Workshop on Formal Approaches to Supervised Learning. Addison-Wesley: Reading, MA.

    Google Scholar 

  6. Forbus, K., 1985, Qualitative process theory, in Qualitative reasoning about physical systems, D. Bobrow, ed., MIT Press: Cambridge, Mass.

    Google Scholar 

  7. Fuller, S. 1993. Philosophy of Science and its Discontents, Second Edition. Guilford Press, New York.

    Google Scholar 

  8. Georgeff, M.P. and Wallace, C.S. 1984. A general selection criterion for induction inference. In Proceedings of the European Conference on Artificial Intelligence, p. 473–482. Elsevier: Amsterdam.

    Google Scholar 

  9. Korf, R.E. 1988. Search: A Survey of recent results. In H.E. Shrobe (Ed.), Exploring Artificial Intelligence: Survey Talks from the National Conferences on Artificial Intelligence (pp. 197–237). Morgan Kaufman.

    Google Scholar 

  10. Kuhn, T. 1962. The Structure of Scientific Revolutions. University of Chicago: Chicago.

    Google Scholar 

  11. Kulkarni, D. and Simon, H. 1988. The processes of scientific discovery: the strategy of experimentation, Cognitive Science, vol. 12, p. 139–175.

    Google Scholar 

  12. Lakatos, I. 1970. Falsification and the methodology of scientific research programmes. In Lakatos, I. and Musgrave, A. (ed.) Criticism and the growth of knowledge. Cambridge University Press: Cambridge.

    Google Scholar 

  13. Lakatos, I. 1971. History of science and its rational reconstructions. In Buck, R.C. and Cohen, R.S. (ed.) Boston Studies in the Philosophy of Science. vol 8, p 91–135. Reidel: Dordrecht.

    Google Scholar 

  14. Lee, G. 1977. Family Structure and Interaction: A Comparative Analysis. J.B. Lippincott. Philadelphia.

    Google Scholar 

  15. McAllister, J. 1996. Beauty and Revolution in Science. Cornell University: Ithaca.

    Google Scholar 

  16. Michalewicz, Z., Fogel, D. 2000. How to Solve It: Modern Heuristics. Springer-Verlag. Berlin.

    Google Scholar 

  17. Murdock, G.P. 1949. Social Structure. The Free Press. New York.

    Google Scholar 

  18. Nordhausen, B., Langley, P., 1987, Towards an integrated discovery system, in Proceedings of the Tenth International Joint Conference on Artificial Intelligence, Morgan Kaufmann, Milan, Italy.

    Google Scholar 

  19. Nordhausen, B., Langley, P., 1990, An integrated approach to empirical discovery, in Shrager J, and Langley, P. (ed.) Computational Models of Scientific Discovery and Theory Formation. Morgan Kaufmann, San Mateo.

    Google Scholar 

  20. Phillips, J. 2000. Representation Reducing Heuristics for Semi-Automated Scientific Discovery. Ph D. Thesis, University of Michigan.

    Google Scholar 

  21. Rissanen, J. 1978. Modeling by shortest data description. Automatica, 14, p. 45–471.

    Google Scholar 

  22. Sleep, N., Fujita, K. 1997. Principles of Geophysics. Blackwell Science. Malden.

    Google Scholar 

  23. Thagard, P. 1988. Computational Philosophy of Science, MIT Press, Cambridge MA.

    Google Scholar 

  24. Wallace, C.S., and Freeman, P.R. 1987. Estimation and inference by compact encoding. J. Roy. Stat. Soc., Series B, 49, p233–265.

    Google Scholar 

  25. Valdes-Perez, R. 1995. Machine discovery in chemistry: new results. Artificial Intelligence, 74(1), p 191–201.

    Google Scholar 

  26. Zembowicz, R. and Zytkow, J. 1996. From contingency tables to various forms of knowledge in databases, in: Advances in Knowledge Discovery and Data Mining, Fayyad et al (eds.) AAAI Press, San Mateo.

    Google Scholar 

  27. Zytkow, J. and Zembowicz, R. 1993. Database exploration in the search for regularities, J. Intelligent Information Systems, 2:39–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Phillips, J. (2001). Towards a Method of Searching a Diverse Theory Space for Scientific Discovery. In: Jantke, K.P., Shinohara, A. (eds) Discovery Science. DS 2001. Lecture Notes in Computer Science(), vol 2226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45650-3_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-45650-3_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42956-2

  • Online ISBN: 978-3-540-45650-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics