Skip to main content

A Logic of Probability with Decidable Model-Checking

  • Conference paper
  • First Online:
Computer Science Logic (CSL 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2471))

Included in the following conference series:

Abstract

A predicate logic of probability, close to logics of probability of Halpern and al., is introduced. Our main result concerns the following model-checking problem: deciding whether a given formula holds on the structure defined by a given Finite Probabilistic Process. We show that this model-checking problem is decidable for a rather large subclass of formulas of a second-order monadic logic of probability. We discuss also the decidability of satisfiability and compare our logic of probability with the probabilistic temporal logic pCTL *.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abadi and J. Halpern. Decidability and expressiveness for first-order logic of probability. Information and Computation, 112(1):1–36, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Aziz, V. Singhal, F. Balarin, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. It usually works: the temporal logic of stochastic systems. In Computer Aided Verification. Proceeding of CAV’95, pages 155–165. Springer Verlag, 1995. Lect. Notes in Comput. Sci., vol. 939.

    Google Scholar 

  3. J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik u. Grundlag. Math., (6):66–92, 1960.

    Google Scholar 

  4. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal of the ACM, 42:857–907, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Fagin and J. Halpern. Reasoning about knowledge and probability. J. of the Assoc. Comput. Mach., 41(2):340–367, 1994.

    MATH  MathSciNet  Google Scholar 

  6. R. Fagin, J.Y. Halpern, and N. Megiddo. A logic for reasoning about probabilities. Information and Computation, 87:1,2:78–128, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. R. (Feliks Ruvimovich) Gantmakher. The Theory of Matrices. Chelsea Pub. Co., New York, 1977.

    Google Scholar 

  8. D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic. Clarendon Press, Oxford, 1994.

    Book  Google Scholar 

  9. J. Halpern. An analysis of first-order logics of probability. Artificial Intelligence, 46:311–350, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  10. H. A. Hansson. Time and Probability in Formal Design of Distributed Systems. Elsevier, 1994. Series: “Real Time Safety Critical System”, vol. 1.

    Google Scholar 

  11. H. A. Hansson and B. Jonsson. A logic for reasoning about time and probability. Formal Aspects of Computing, 6(5):512–535, 1994.

    Article  MATH  Google Scholar 

  12. W. A. Hodges. Model Theory. Cambridge University Press, Cambridge, 1993.

    MATH  Google Scholar 

  13. J. G. Kemeny and J. L. Snell. Finite Markov Chains. D Van Nostad Co., Inc., Princeton, N.J., 1960.

    MATH  Google Scholar 

  14. J. G. Kemeny, J. L. Snell, and A.W. Knapp. Denumerable Markov Chains. D Van Nostad Co., Inc., Princeton, N. J., 1966.

    MATH  Google Scholar 

  15. H. J. Keisler. Probability quantifiers. In J. Barwise and S. S.Feferman, editors, Model Theoretic Logics, pages 509–556. Springer, 1985.

    Google Scholar 

  16. D. Lehmann and S. Shelah. Reasoning about time and chance. Information and Control, 53(3):165–198, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  17. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, pages 131–191. North-Holland, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beauquier, D., Rabinovich, A., Slissenko, A. (2002). A Logic of Probability with Decidable Model-Checking. In: Bradfield, J. (eds) Computer Science Logic. CSL 2002. Lecture Notes in Computer Science, vol 2471. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45793-3_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-45793-3_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44240-0

  • Online ISBN: 978-3-540-45793-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics