Skip to main content

The Minimum-Model DNA Computation on a Sequence of Probe Arrays

  • Conference paper
  • First Online:
Unconventional Models of Computation (UMC 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2509))

Included in the following conference series:

  • 432 Accesses

Abstract

This paper investigates the computational power of a variant of the minimum DNA computation model proposed by Ogihara and Ray. In the variant, two fundamental operations (separation by length and digestion) are dispensed with. To compensate for the loss, the probe arrays are considered as the media for reaction and a wash operation is added to the set of permissible operations. Computation in this model necessarily consists of cycles of five steps: merge, anneal, wash, denature, and wash. It is shown that boolean circuits can be theoretically simulated repetition of the cycle on the same set of four probe arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Adleman. Molecular computation of solutions to combinatorial problems. Science, 266:1021–1024, 1994.

    Article  Google Scholar 

  2. M. Amos, P. E. Dunne, and A. Gibbons. DNA simulation of boolean circuits. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. D. Deb, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. L. Riolo, editors, Proceedings of 3rd Annual Genetic Programming Conference, pages 679–683, San Francisco, CA, 1998. Morgan Kaufmann.

    Google Scholar 

  3. Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro. Programmable and autonomous computing machine made of biomolecules. Nature, 414:430–434, 2001.

    Article  Google Scholar 

  4. R. S. Braich, N. Chelapov, C. Johnson, P. W. K. Rothemund, and L. Adleman. Solution of a 20-variable 3-SAT problem on a DNA computer. Science, 296:499–502, 2002.

    Article  Google Scholar 

  5. A. Cukras, D. Faulhammer, R. Lipton, and L. Landweber. Chess game: a model for RNA-based computation. In Preliminary Proceedings of 4th DIMACS Workshop on DNA Based Computers, pages 27–37, 1998.

    Google Scholar 

  6. D. R. Dorris, R. Ramakrishnan, D. Trakas, F. Dudzik, R. Belval, C. Zhao, A. Nguyen, M. Domanus, and A. Mazumder. A highly reproducible, linear, and automated sample preparation method for DNA microarrays. Genome Research, 12(6):976–984, 2002.

    Article  Google Scholar 

  7. C. F. Edman, D. E. Raymond, D. J. Wu, E. Tu, R. G. Sosnowski, W. F. Butler, M. Nerenberg, and M. J. Heller. Electric field directed nucleic acid hybridization on microchips. Nucleic Acids Research, 25(24):4907–4914, 1997.

    Article  Google Scholar 

  8. R. Feynman. There’s plenty of room at the bottom. In D. Gilbert, editor, Miniaturization, pages 282–296. Reingold, New York, 1961.

    Google Scholar 

  9. A. Gehani and J. Reif. Microflow bio-molecular computation. Biosystems, 52(1–3):197–216, 1999.

    Article  Google Scholar 

  10. Z. Guo, R. Guigoyle, A. Thiel, R. Wang, and L. Smith. Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotides on glass supports. Nucleic Acids Research, 22:5456–5465, 1994.

    Article  Google Scholar 

  11. H. J. Hoover, M. M. Klawe, and N. J. Pippenger. Bounding fan-out in logical networks. Journal of the Association for Computing Machinery, 31(1):13–18, 1984.

    MATH  MathSciNet  Google Scholar 

  12. Y. Huang, K. L. Ewalt, M. Tirado, R. Haigis, A. Forster, D. Ackley, M. J. Heller, J. P. O’Connell, and M. Krihak. Electric manipulation of bioparticles and macromolecules on microfabricated electrodes. Analytical Chemistry, 73(7):1549–59, 2001.

    Article  Google Scholar 

  13. J. B. Lamture, K. L. Beattie, B. E. Burke, M. D. Eggers, D. J. Ehrlich, R. Fowler, M. A. Hollis, B. B. Kosicki R. K. Reich, and S. R. Smith. Direct detection of nucleic acid hybridization on the surface of a charge coupled device. Nucleic Acids Research, 22(11):2121–2125, 1994.

    Article  Google Scholar 

  14. K. Lindroos, U. Liljedahl, M. Raitio, and A.-C. Syvanen. Minisequencing on oligonucleotide microarrays: comparison of immobilization chemistries. Nucleic Acids Research, 29:e69, 2001.

    Article  Google Scholar 

  15. R. Lipton. DNA solutions of hard computational problems. Science, 268:542–545, 1995.

    Article  Google Scholar 

  16. Q. Liu, L. Wang, A. G. Frutos, R. M. Corn, and L. M. Smith. DNA computing on surfaces. Nature, 403:175–178, 2000. January, 13.

    Google Scholar 

  17. M. Ogihara. Relating the minimum model for DNA computation and Boolean circuits. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Genetic and Evolutionary Computation Conference, pages 1817–1822. Morgan Kaufmann Publishers, San Francisco, CA, 1999.

    Google Scholar 

  18. M. Ogihara and A. Ray. A DNA-based self-propagating algorithm for solving bounded-fan-in Boolean circuits. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. D. Deb, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. L. Riolo, editors, Genetic Programming 1998: Proceedings of the Third Annual Conference, pages 725–730, San Francisco, CA, July 1998. Morgan Kaufman.

    Google Scholar 

  19. M. Ogihara and A. Ray. The minimum DNA model and its computational power. In Unconventional Models of Computation, pages 309–322. Springer, Singapore, 1998.

    Google Scholar 

  20. M. Ogihara and A. Ray. Biomolecular computing-recent theoretical and experimental advances. SIGACT News, 30(2):22–30, 1999.

    Article  MathSciNet  Google Scholar 

  21. M. Ogihara and A. Ray. Simulating boolean circuits on DNA computers. Algorithmica, 25:239–250, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Ogihara, A. Ray, and K. Smith. Biomolecular computing-a shape of computation to come. SIGACT News, 28(3):2–11, 1997.

    Article  Google Scholar 

  23. B. W. Pontius and P. Berg. Rapid renaturation of complementary DNA strands mediated by cationic detergents: A role for high-probability binding domains in enhancing the kinetics of molecular assembly processes. Proceedings of the National Academy of Science, 88:8237–8241, 1991.

    Article  Google Scholar 

  24. R. Radtkey, L. Feng, M. Muralhidar, M. Duhon, D. Canter, D. DiPierro, S. Fallon, E. Tu, K. McElfresh, M. Nerenberg, and R. G. Sosnowski. Rapid, high fidelity analysis of simple sequence repeats on an electronically active DNA microchip. Nucleic Acids Research, 28(7):E17, 2000.

    Article  Google Scholar 

  25. R. Ramakrishnan, D. Dorris, A. Lublinsky, A. Nguyen, M. Domanus, A. Prokhorova, L. Gieser, E. Touma, R. Lockner, and M. Tata. Development and use of analytical tools in the dissection and optimization of microarray performance. Nucleic Acids Research, 30:E30, 2002.

    Article  Google Scholar 

  26. J. H. Reif. Parallel biomolecular computation: methods and simulations. Algorithmica, 25:142–175, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  27. P. Rothemund. A DNA and restriction enzyme implementation of Turing machines. In R. Lipton and E. Baum, editors, DNA Based Computers, pages 75–119. The American Mathematical Society DIMACS Series in Discrete Mathematics and Theoretical Computer Science Volume 27, 1996.

    Google Scholar 

  28. S. Roweis, E. Winfree, R. Burgoyne, N. Chelapov, M. Goodman, P. Rothemund, and L. Adleman. A sticker based model for DNA computation. In L. Landweber and E. Baum, editors, DNA Based Computers II, pages 1–30. The American Mathematical Society DIMACS Series in Discrete Mathematics and Theoretical Computer Science Volume 44, 1999.

    Google Scholar 

  29. J. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, and M. Hagiya. Molecular computation by DNA hairpin formation. Science, 288:1223–1226, 2000.

    Article  Google Scholar 

  30. M. Schena, D. Shalon, R. w. Davis, and P. O. Brown. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270:467–470, 1995.

    Article  Google Scholar 

  31. J. Watson, M. Gilman, J. Witkowski, and M. Zoller. Recombinant DNA. Scientific American Books, New York, NY, 2nd edition, 1992.

    Google Scholar 

  32. J. Watson, N. Hopkins, J. Roberts, J. Steiz, and A. Weiner. Molecular Biology of the Gene. Benjamin-Cummings, Menlo Part, CA, 4 edition, 1987.

    Google Scholar 

  33. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Design and self-assembly of two-dimensional DNA crystals. Nature, 394:539–544, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ogihara, M., Ray, A. (2002). The Minimum-Model DNA Computation on a Sequence of Probe Arrays. In: Unconventional Models of Computation. UMC 2002. Lecture Notes in Computer Science, vol 2509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45833-6_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45833-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44311-7

  • Online ISBN: 978-3-540-45833-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics