Skip to main content

Conversion between Two Multiplicatively Dependent Linear Numeration Systems

  • Conference paper
  • First Online:
LATIN 2002: Theoretical Informatics (LATIN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2286))

Included in the following conference series:

Abstract

We consider two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers ß and γ respectively, such that ß and γ are multiplicatively dependent. It is shown that the conversion between one system and the other one is computable by a finite automaton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J.-P. Schreiber, Pisot and Salem numbers, Birkháuser, 1992.

    Google Scholar 

  2. A. Bertrand, Développements en base de Pisot et répartition modulo 1. C.R.Acad. Sc., Paris 285 (1977), 419–421.

    MATH  Google Scholar 

  3. A. Bertrand-Mathis, Commentécrire les nombres entiers dans une base qui n’est pas entière. Acta Math. Acad. Sci. Hungar. 54 (1989), 237–241.

    Article  MathSciNet  Google Scholar 

  4. A. Bès, An extension of the Cobham-Semënov Theorem. Journal of Symbolic Logic 65 (2000), 201–211.

    Article  MathSciNet  Google Scholar 

  5. J.R. Bűchi, Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6 (1960), 66–92.

    Article  MathSciNet  Google Scholar 

  6. V. Bruyère and G. Hansel, Bertrand numeration systems and recognizability. Theoret. Comp. Sci. 181 (1997), 17–43.

    Article  MathSciNet  Google Scholar 

  7. A. Cobham, On the base-dependence of sets of numbers recognizable by finite automata. Math. Systems Theory 3 (1969), 186–192.

    Article  MathSciNet  Google Scholar 

  8. F. Durand, A generalization of Cobham’s Theorem. Theory of Computing Systems 31 (1998), 169–185.

    Article  MathSciNet  Google Scholar 

  9. S. Eilenberg, Automata, Languages and Machines, vol. A, Academic Press, 1974.

    Google Scholar 

  10. S. Fabre, Une généralisation du théorème de Cobham. Acta Arithm. 67 (1994), 197–208.

    Article  Google Scholar 

  11. A.S. Fraenkel, Systems of numeration. Amer. Math. Monthly 92(2) (1985), 105–114.

    Article  MathSciNet  Google Scholar 

  12. Ch. Frougny, Representation of numbers and finite automata. Math. Systems Theory 25 (1992), 37–60.

    Article  MathSciNet  Google Scholar 

  13. Ch. Frougny, Numeration Systems, Chapter 7 in M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, to appear, available at http://www-igm.univ-mlv.fr/?berstel/Lothaire/index.html.

  14. Ch. Frougny and J. Sakarovitch, Automatic conversion from Fibonacci representation to representation in base φ, and a generalization. Internat. J. Algebra Comput. 9 (1999), 351–384.

    Article  MathSciNet  Google Scholar 

  15. Ch. Frougny and B. Solomyak, On Representation of Integers in Linear Numeration Systems, In Ergodic theory of Z d-Actions, edited by M. Pollicott and K. Schmidt, London Mathematical Society Lecture Note Series 228 (1996), Cambridge University Press, 345–368.

    Google Scholar 

  16. Ch. Frougny and B. Solomyak, On the context-freeness of the θ-expansions of the integers. Internat. J. Algebra Comput. 9 (1999), 347–350.

    Article  MathSciNet  Google Scholar 

  17. A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493.

    Article  MathSciNet  Google Scholar 

  18. A. L. Semënov, The Presburger nature of predicates that are regular in two number systems. Siberian Math. J. 18 (1977), 289–299.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frougny, C. (2002). Conversion between Two Multiplicatively Dependent Linear Numeration Systems. In: Rajsbaum, S. (eds) LATIN 2002: Theoretical Informatics. LATIN 2002. Lecture Notes in Computer Science, vol 2286. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45995-2_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-45995-2_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43400-9

  • Online ISBN: 978-3-540-45995-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics