Skip to main content

Guiding Attention Produces Inferences in Diagram-Based Problem Solving

  • Conference paper
  • First Online:
Diagrammatic Representation and Inference (Diagrams 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2317))

Included in the following conference series:

Abstract

Many eye-tracking studies have shown that visual attention patterns during diagram-based problem solving, measured by eye movements, reveal critical aspects of the problem solving process that traditional measures like solution time and accuracy cannot address. In our first experiment (n = 14), we use this method during the solution of a widely-studied high level reasoning problem, Duncker’s (1945) radiation problem, to show that differences in visual attention to a particular diagram feature corresponds with correctly solving the problem. We then extend these findings in a second experiment (n = 81) to evaluate cognitive sensitivity to perceptual changes in the diagram. We show that problem solvers are highly sensitive to the diagram structure, and that the shifts in attention that result from subtle perceptual changes in the diagram appear to have a dramatic positive effect on reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–660.

    Article  Google Scholar 

  2. Barwise, J., & Etchemendy, J. (1996). Visual information and valid reasoning. In G. Allwein & J. Barwise (Eds.), Logical reasoning with diagrams (pp. 3–26). Oxford: Oxford University Press.

    Google Scholar 

  3. Barwise, J., & Hammer, E. (1996). Diagrams and the concept of logical system. In G. Allwein & J. Barwise (Eds.), Logical reasoning with diagrams (pp. 49–78). Oxford: Oxford University Press.

    Google Scholar 

  4. Bauer, M. I. & Johnson-Laird, P. N. (1993). How diagrams can improve reasoning. Psychological Science, 4, 372–378.

    Article  Google Scholar 

  5. Beveridge, M., & Parkins, E. (1987). Visual representation in analogical problem solving. Memory and Cognition, 15, 230–237.

    Google Scholar 

  6. Demarais, A. M. & Cohen, B. H. (1998). Evidence for image-scanning eye movements during transitive inference. Biological Psychology, 49, 229–247.

    Article  Google Scholar 

  7. Duncker, K. (1945). On problem solving. Psychological Monographs, 58, Whole No. 270.

    Google Scholar 

  8. Epelboim, J. & Suppes, P. (1997). Eye movements during geometrical problem solving. Proceedings of the 19th Annual Conference of the Cognitive Science Society. (p. 911). Mahwah, NJ: Erlbaum.

    Google Scholar 

  9. Gick, M. L. (1985). The effect of a diagram retrieval cue on spontaneous analogical transfer. Canadian Journal of Psychology, 39, 460–466.

    Google Scholar 

  10. Gick, M. L. (1989). Two functions of diagrams in problem solving by analogy. In H. Mandl & J. R. Levin (Eds.), Knowledge acquisition from text and pictures (pp. 215–231). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  11. Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1–38.

    Article  Google Scholar 

  12. Greeno, J. G. (1998). The situativity of knowing, learning, and research. American Psychologist, 53, 5–26.

    Article  Google Scholar 

  13. Hegarty, M. (1992). The mechanics of comprehension and comprehension of mechanics. In K. Rayner (Ed.), Eye movements and visual cognition: Scene perception and reading (pp. 428–443). New York: Springer-Verlag.

    Google Scholar 

  14. Hegarty, M. & Just, M. A. (1993). Constructing mental models of machines from text and diagrams. Journal of Memory and Language, 32, 717–742.

    Article  Google Scholar 

  15. Hodgson, T. L., Bajwa, A., Own, A. M., & Kennard, C. (2000). The strategic control of gaze direction in the tower of London task. Journal of Cognitive Neuroscience, 12, 894–907.

    Article  Google Scholar 

  16. Hunziker, H. W. (1970). Visuelle Informationsaufnahme und Intelligenz: Eine Untersuchung ueber die Augenfixationen beim Problemloesen. Schweizerische Zeitschrift fuer Psychologie, 29, 165–171.

    Google Scholar 

  17. Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.

    Google Scholar 

  18. Knoblich, G., Ohlsson, S., & Raney, R. E. (in press). An eye movement study of insight problem solving. Memory & Cognition.

    Google Scholar 

  19. Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.

    Article  Google Scholar 

  20. Lenhart, R. E. (1983). Conjugate lateral eye movements and problem solving ability: Or, where to look for the right answer. Psychophysiology, 20, 456.

    Google Scholar 

  21. Mayer, R. E. (1976). Comprehension as affected by structure of problem representation. Memory and Cognition, 4, 249–255.

    Google Scholar 

  22. Mayer, R. E. (1983). Thinking, problem solving, cognition. NY: W. H. Freeman and Company.

    Google Scholar 

  23. Nakano, A. (1971). Eye movements in relation to mental activity of problemsolving. Psychologia, 14, 200–207.

    Google Scholar 

  24. Pedone, R., Hummel, J. E., & Holyoak, K. J. (2001). The use of diagrams in analogical problem solving. Memory & Cognition, 29, 214–221.

    Google Scholar 

  25. Richardson, D. C. & Spivey, M. J. (2000). Representation, space, and Hollywood Squares: Looking at things that aren’t there anymore. Cognition, 76, 269–295.

    Article  Google Scholar 

  26. Rozenblit, L., Spivey, M., & Wojslawowicz, J. (in press). Mechanical reasoning about gear-and-belt diagrams: Do eye-movements predict performance? In B. Meyer (Ed.), Diagrams and spatial reasoning. Springer.

    Google Scholar 

  27. Spivey, M. J., & Geng, J. J. (in press). Oculomotor mechanisms activated by imagery and memory: Eye movements to absent objects. Psychological Research.

    Google Scholar 

  28. St. Julien, J. (1997). Explaining learning: The research trajectory of situated cognition and the implications of connectionism. In D. Kirshner & J. Wilson (Eds.), Situated cognition: Social, semiotic, and psychological perspectives. (pp.261–280). Mahwah, NJ: Erlbaum.

    Google Scholar 

  29. Wheatley, G. H. (1997). Reasoning with images in mathematical activity. In L. D. English (Ed.), Mathematical reasoning: Analogies, metaphors, and images (pp. 281–297). Mahwah, NJ: Erlbaum.

    Google Scholar 

  30. Young, M. F. & McNeese, M. D. (1995). Asituated cognition approach to problem solving. In P. Hancock & J. Flach (Eds.), Local applications of the ecological approach to human-machine systems. (pp. 359–391). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  31. Zhang, J. & Norman, D. O. (1994). Representations in distributed cognitive tasks. Cognitive Science, 18, 87–122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grant, E.R., Spivey, M.J. (2002). Guiding Attention Produces Inferences in Diagram-Based Problem Solving. In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds) Diagrammatic Representation and Inference. Diagrams 2002. Lecture Notes in Computer Science(), vol 2317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46037-3_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-46037-3_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43561-7

  • Online ISBN: 978-3-540-46037-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics