Skip to main content

Driven Chaotic Mesoscopic Systems, Dissipation and Decoherence

  • Chapter
  • First Online:
Dynamics of Dissipation

Part of the book series: Lecture Notes in Physics ((LNP,volume 597))

Abstract

Driven quantum systems, described by Hamiltonian where x(t) is a time dependent parameter, are of interest in mesoscopic physics (quantum dots), as well as in nuclear, atomic and molecular physics. Such systems tend to absorb energy. This irreversible effect is known as dissipation. More generally, x may b e a dynamical variable, where the total Hamiltonian is . In such case the interaction of (x, p) with the environmental degrees of freedom (Q, P) leads to dephasing as well as to dissipation. It should be emphasized that even few (Q, P) degrees of freedom can serve as a miniature heat bath, provided they have chaotic dynamics. We shall introduce a general framework for the analysis of dissipation and dephasing, and we shall clarify the tight connection to recent studies of quantum irreversibility (also referred to as “Loschmidt echo” or as the “fidelity” of quantum computation). Specific model systems that will be presented are: particle in a box driven by moving a wall, and particle in a box/ring driven by electro-motive-force. These two examples are related to studies of nuclear friction and mesoscopic conductance. Specific issues to be discussed are the limitations of kinetic theory, the capabilities of linear response theory, and the manifestation of non-perturbative quantum-mechanical effects. In particular we shall explain that random matrix theory and the semiclassical theory lead to different non-perturbative limits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer Verlag New York 1990).

    MATH  Google Scholar 

  2. H.J. Stockmann, “Quantum Chaos: An Introduction” (Cambridge Univ Pr 1999).

    Google Scholar 

  3. F. Haake, “Quantum Signatures of Chaos” (Springer 2000).

    Google Scholar 

  4. M. Wilkinson, J. Phys. A21, 4021 (1988); J. Phys. A 20, 2415 (1987).

    ADS  Google Scholar 

  5. M. Wilkinson and E.J. Austin, J. Phys. A28, 2277 (1995). E.J. Austin and M. Wilkinson, Nonlinearity 5, 1137 (1992).

    ADS  Google Scholar 

  6. For review and references see [7] and [8].

    Google Scholar 

  7. S. Fishman in “Quantum Chaos”, Proceedings of the International School of Physics “Enrico Fermi”, Course CXIX, Ed. G. Casati, I. Guarneri and U. Smilansky (North Holland 1991).

    Google Scholar 

  8. M. Raizen in “New directions in quantum chaos”, Proceedings of the International School of Physics “Enrico Fermi”, Course CXLIII, Edited by G. Casati, I. Guarneri and U. Smilansky (IOS Press, Amsterdam 2000).

    Google Scholar 

  9. D. Cohen in “New directions in quantum chaos”, Proceedings of the International School of Physics “Enrico Fermi”, Course CXLIII, Edited by G. Casati, I. Guarneri and U. Smilansky, (IOS Press, Amsterdam 2000).

    Google Scholar 

  10. D. Cohen, Phys. Rev. Lett. 82, 4951 (1999).

    Article  MATH  ADS  Google Scholar 

  11. D. Cohen and T. Kottos, Phys. Rev. Lett. 85, 4839 (2000).

    Article  ADS  Google Scholar 

  12. D. Cohen, Annals of Physics 283, 175 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. D. Cohen, F.M. Izrailev and T. Kottos, Phys. Rev. Lett. 84, 2052 (2000).

    Article  ADS  Google Scholar 

  14. T. Kottos and D. Cohen, Phys. Rev. E64, R–065202 (2001).

    Google Scholar 

  15. S.W. Doescher and M.H. Rice, Am. J. Phys. 37, 1246 (1969).

    Article  ADS  Google Scholar 

  16. A.J. Makowski and S.T. Dembinski, Physics Letters A154, 217 (1991).

    ADS  MathSciNet  Google Scholar 

  17. J.V. Jose and R. Cordery, Phys. Rev. Lett. 56, 290 (1986).

    Article  ADS  Google Scholar 

  18. J. Blocki, Y. Boneh, J.R. Nix, J. Randrup, M. Robel, A.J. Sierk and W.J. Swiatecki, Ann. Phys. 113, 330 (1978).

    Article  ADS  Google Scholar 

  19. S.E. Koonin, R.L. Hatch and J. Randrup, Nuc. Phys. A283, 87 (1977). S.E. Koonin and J. Randrup, Nuc. Phys. A289, 475 (1977).

    ADS  Google Scholar 

  20. D. Cohen and T. Kottos, Phys. Rev. E63, 36203 (2001).

    ADS  Google Scholar 

  21. E. Wigner, Ann. Math. 62 548 (1955); 65 203 (1957).

    Article  MathSciNet  Google Scholar 

  22. G. Casati, B.V. Chirikov, I. Guarneri and F.M. Izrailev, Phys. Rev. E48, R1613 (1993); Phys. Lett. A223, 430 (1996).

    ADS  Google Scholar 

  23. Y. Imry, Introduction to Mesoscopic Physics (Oxford Univ. Press 1997).

    Google Scholar 

  24. Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000).

    Article  ADS  Google Scholar 

  25. L.P. Kouwenhoven, C.M. Marcus, P.L. Mceuen, S. Tarucha, R. M. Westervelt and N.S. Wingreen, Proc. of Advanced Study Inst. on Mesoscopic Electron Transport, edited by L.L. Sohn, L.P. Kouwenhoven and G. Schon (Kluwer 1997).

    Google Scholar 

  26. M.V. Berry in Chaos and Quantum Systems, ed. M.-J. Giannoni, A. Voros, J. Zinn-Justin (Elsevier, Amsterdam, 1991).

    Google Scholar 

  27. M. Feingold and A. Peres, Phys. Rev. A34 591, (1986); M. Feingold, D. Leitner and M. Wilkinson, Phys. Rev. Lett. 66, 986 (1991); M. Wilkinson, M. Feingold and D. Leitner, J. Phys. A24, 175 (1991); M. Feingold, A. Gioletta, F. M. Izrailev and L. Molinari, Phys. Rev. Lett. 70, 2936 (1993).

    ADS  MathSciNet  Google Scholar 

  28. H. Attias and Y. Alhassid, Phys. Rev. E52, 4776 (1995).

    ADS  Google Scholar 

  29. T. Guhr, A. Muller-Groeling and H.A. Weidenmuller, Phys. Rep. 299, 190 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  30. D. Cohen and E.J. Heller, Phys. Rev. Lett. 84, 2841 (2000).

    Article  ADS  Google Scholar 

  31. D. Cohen, A. Barnett and E.J. Heller, Phys. Rev. E63, 46207 (2001).

    ADS  Google Scholar 

  32. F. Borgonovi, I. Guarneri and F.M. Izrailev, Phys. Rev. E57, 5291 (1998); L. Benet, F.M. Izrailev, T.H. Seligman and A. Suarez-Moreno, chao-dyn/9912035.

    ADS  Google Scholar 

  33. E.J. Heller in Chaos and Quantum Systems, ed. M.-J. Giannoni, A. Voros, J. Zinn-Justin (Elsevier, Amsterdam, 1991).

    Google Scholar 

  34. A. Peres, Phys. Rev. A30, 1610 (1984); See also A. Peres, Quantum Theory: Concepts and Methods (Dordrecht, 1995).

    ADS  MathSciNet  Google Scholar 

  35. R.A. Jalabert and H.M. Pastawski, Phys. Rev. Lett. 86, 2490 (2001); F.M. Cucchietti, H.M. Pastawski and R. Jalabert Physica, A283, 285 (2000); F.M. Cucchietti, H.M. Pastawski and D.A. Wisniacki cond-mat/0102135, to be published as Phys. Rev. E Rapid; F. Cucchietti et al., nlin.CD/0112015, to be published in Phys. Rev. E.

    Article  ADS  Google Scholar 

  36. Ph. Jacquod, P.G. Silvestrov and C.W.J. Beenakker, Phys. Rev. E64, 055203 (2001).

    ADS  Google Scholar 

  37. N.R. Cerruti and S. Tomsovic, Phys. Rev. Lett. 88, 054103 (2002).

    Article  ADS  Google Scholar 

  38. D.A. Wisniacki and D. Cohen, quant-ph/0111125.

    Google Scholar 

  39. T. Prosen, quant-ph/0106149; T. Prosen and M. Znidaric, J. Phys. A34, L681 (2001).

    Google Scholar 

  40. T. Kottos and D. Cohen, cond-mat/0201148.

    Google Scholar 

  41. See [12] and [9]. The classical theory that is presented in those references integrates ideas that were promoted in previous studies, mainly [42] and [4] and [43].

    Google Scholar 

  42. E. Ott, Phys. Rev. Lett. 42, 1628 (1979); R. Brown, E. Ott and C. Grebogi, Phys. Rev. Lett, bf 59, 1173 (1987); J. Stat. Phys. 49, 511 (1987).

    Article  ADS  Google Scholar 

  43. C. Jarzynski, Phys. Rev. E48, 4340 (1993).

    ADS  MathSciNet  Google Scholar 

  44. A clear formulation of the diffusion dissipation relation can be found in [9,12], and also in Appendix A of [45]. It constitutes a refinement/generalization of the dissipation picture which is presented in [4]. The standard textbook formulation of LRT and the fluctuation-dissipation relation can be found in Appendix A of [23].

    Google Scholar 

  45. A. Barnett, D. Cohen and E.J. Heller, J. Phys. A34, 413 (2001).

    ADS  MathSciNet  Google Scholar 

  46. D. Cohen, unpublished.

    Google Scholar 

  47. A. Barnett, D. Cohen and E.J. Heller, Phys. Rev. Lett. 85, 1412 (2000).

    Article  ADS  Google Scholar 

  48. J.M. Robbins and M.V. Berry, J. Phys. A25, L961 (1992); M.V. Berry and J.M. Robbins, Proc. R. Soc. Lond. A442, 659 (1993); M.V. Berry and E.C. Sinclair, J. Phys. A30, 2853 (1997).

    ADS  MathSciNet  Google Scholar 

  49. O.M. Auslaender and S. Fishman, Phys. Rev. Lett. 84, 1886 (2000); J. Phys. A33, 1957 (2000).

    Article  ADS  Google Scholar 

  50. D.A. Wisniacki and E. Vergini, Phys. Rev. E59, 6579 (1999).

    ADS  Google Scholar 

  51. C. Jarzynski, Phys. Rev. Lett. 74, 2937 (1995).

    Article  ADS  Google Scholar 

  52. D. Cohen, Phys. Rev. E55, 1422 (1997).

    ADS  Google Scholar 

  53. D. Cohen, Phys. Rev. Lett. 78, 2878 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. D. Cohen, J. Phys. A31, 8199 (1998).

    ADS  Google Scholar 

  55. A.O. Caldeira and A.J. Leggett, Physica A121, 587 (1983); A.O. Caldeira and A.J. Leggett, Ann. Phys. (N.Y.) 140, 374 (1983); Physica A121, 587 (1983).

    ADS  MathSciNet  Google Scholar 

  56. L. Bonig, K. Schonhammer and W. Zwerger, Phys. Rev. B46, 855 (1992).

    ADS  Google Scholar 

  57. B. Vacchini, Phys. Rev. E63, 066115 (2001); J. Math. Phys. 42, 4291 (2001).

    ADS  Google Scholar 

  58. A. Bulgac, G.D. Dang and D. Kusnezov, Phys. Rev. E58, 196 (1998).

    ADS  Google Scholar 

  59. R.P. Feynman and F.L. Vernon Jr., Ann. Phys. (N.Y.) 24, 118 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  60. M. Buttiker, cond-mat/0106149.

    Google Scholar 

  61. D. Cohen and Y. Imry, Phys. Rev. B59, 11143 (1999).

    ADS  Google Scholar 

  62. D. Cohen, Phys. Rev. E65, 026218 (2002).

    ADS  Google Scholar 

  63. R. Alicki, Phys. Rev. A65, 034104 (2002).

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cohen, D. (2002). Driven Chaotic Mesoscopic Systems, Dissipation and Decoherence. In: Garbaczewski, P., Olkiewicz, R. (eds) Dynamics of Dissipation. Lecture Notes in Physics, vol 597. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46122-1_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-46122-1_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44111-3

  • Online ISBN: 978-3-540-46122-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics