Skip to main content

State Space Approach

  • Chapter
  • First Online:
Decoupling Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 285))

  • 495 Accesses

Abstract

In this chapter we shall consider a system of the following state space form

$$ \begin{gathered} \dot x = Ax + Bu, \hfill \\ y = Cx. \hfill \\ \end{gathered} $$
(4.1)

If x(0) = 0 and the input and the output vectors have the same dimension m, these are related by the transfer function matrix:

$$ y(s) = G(s)u(s) = C(sI - A)^{ - 1} Bu(s), $$
(4.2)

which may be expanded into

$$ \begin{gathered} y_1 (s) = g_{11} (s)u_1 (s) + g_{12} (s)u_2 (s) + \cdots + g_{1m} (s)u_m (s), \hfill \\ y_2 (s) = g_{21} (s)u_1 (s) + g_{22} (s)u_2 (s) + \cdots + g_{2m} (s)u_m (s), \hfill \\ \vdots \hfill \\ y_m (s) = g_{m1} (s)u_1 (s) + g_{m2} (s)u_2 (s) + \cdots + g_{mm} (s)u_m (s), \hfill \\ \end{gathered} $$
(4.3)

These equations are said to be coupled, since each individual input influences all of the outputs. If it is necessary to adjust one of the outputs without affecting any of the others, determining appropriate inputs u 1, u 2, . . . , u m will be a difficult task in general. Consequently, there is considerable interest in designing control laws which remove this coupling, so that each input control only the corresponding output. A system of the form (4.1) is said to be (dynamically) decoupled (or non-interacting) if its transfer function matrix G(s) is diagonal and non-singular, that is,

$$ \begin{gathered} y_1 (s) = g_{11} (s)u_1 (s), \hfill \\ y_2 (s) = g_{22} (s)u_2 (s), \hfill \\ \vdots \hfill \\ y_m (s) = g_{mm} (s)u_m (s). \hfill \\ \end{gathered} $$
(4.4)

and none of the hii(s) are identically zero. Such a system may be viewed as consisting of m independent subsystems. Note that this definition depends upon the ordering of inputs and outputs, which is of course quite arbitrary. The definition will be extended to block-decoupling case in Section 4.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.4 Notes and References

  • Camarta, J. F., M. Malabre and J. C. Martínez-García (2001). Fixed poles of simultaneous disturbance rejection and decoupling: a geometric approach. Automatica 37(2), 297–302.

    Article  MathSciNet  Google Scholar 

  • Commault, C., J. M. Dion and J. A. Torres (1991). Minimal structure in the block decoupling problem with stability. Automatica 27, 331–338.

    Article  MATH  MathSciNet  Google Scholar 

  • Descusse, J. (1991). Block noninteracting control with (non)regular static state feedback: a complete solution. Automatica 27, 883–886.

    Article  MathSciNet  Google Scholar 

  • Descusse, J., J. F. Lafay and M. Malabre (1988). Solution to morgan’s problem. IEEE Trans. Aut.Control AC-33, 732–739.

    Article  MathSciNet  Google Scholar 

  • Falb, P. L. and W. A. Wolovich (1967). Decoupling in design and synthesis of multivariable control systems. IEEE Trans. Aut. Control AC-12, 651–669.

    Article  Google Scholar 

  • Hautus, M.L.J. and M. Heymann (1983). Linear feedback decoupling — transfer function analysis. IEEE Trans. Aut. Control 28, 823–832.

    Article  MATH  MathSciNet  Google Scholar 

  • Koussiouris, T.G. (1979). A frequency domain approach to the block decoupling problem: I—the solvability of block decoupling problem by state feedback and a constant non-singular input transformation. Int. J. Control 29(6), 911–1010.

    MathSciNet  Google Scholar 

  • Koussiouris, T.G. (1980). A frequency domain approach to the block decoupling problem: Ii—pole placement while block-decoupling a minimal system by state feedback and a constant non-singular input transformation. Int. J. Control 32(3), 443–464.

    Article  MATH  MathSciNet  Google Scholar 

  • Morgan, B.S. (1964). The synthesis of linear multivariable systems by state variable feedback. IEEE Trans. Aut. Control AC-9, 404–411.

    Google Scholar 

  • Williams, T.W.C. and P. J. Antsaklis (1986). A unifying approach to the decoupling of linear multivariable systems. Int.J.Control 44, 181–201.

    Article  MATH  MathSciNet  Google Scholar 

  • Falb, P. L. and W. A. Wolovich (1967). Decoupling in design and synthesis of multivariable control systems. IEEE Trans. Aut. Control AC-12, 651–669.

    Article  Google Scholar 

  • Wolovich, W. A. and P. L. Falb (1969). On the structure of multivariable systems. SIAM J. Control 17(3), 437–451.

    Article  MathSciNet  Google Scholar 

  • Wonham, W.A. (1986). Linear multivariable control: A geometric approach, 3rd ed. Springer.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2003). State Space Approach. In: Decoupling Control. Lecture Notes in Control and Information Sciences, vol 285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46151-5_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-46151-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44128-1

  • Online ISBN: 978-3-540-46151-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics