Skip to main content

A Dynamic Bayesian Network Approach to Tracking Using Learned Switching Dynamic Models

  • Conference paper
  • First Online:
Hybrid Systems: Computation and Control (HSCC 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1790))

Included in the following conference series:

Abstract

Switching linear dynamic systems (SLDS) attempt to describe a complex nonlinear dynamic system with a succession of linear models indexed by a switching variable. Unfortunately, despite SLDS’s simplicity exact state and parameter estimation are still intractable. Recently, a broad class of learning and inference algorithms for time-series models have been successfully cast in the framework of dynamic Bayesian networks (DBNs). This paper describes a novel DBN-based SLDS model. A key feature of our approach are two approximate inference techniques for overcoming the intractability of exact inference in SLDS. As an example, we apply our model to the human figure motion analysis. We present experimental results for learning figure dynamics from video data and show promising results for tracking, interpolation, synthesis, and classification using learned models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. D. O. Anderson and J. B. Moore. Optimal filtering. Prentice-Hall, Inc., Englewood Clifis, NJ, 1979.

    MATH  Google Scholar 

  2. Y. Bar-Shalom and X.-R. Li. Estimation and tracking: principles, techniques, and software. YBS, Storrs, CT, 1998.

    Google Scholar 

  3. A. Blake, B. North, and M. Isard. Learning multi-class dynamics. In NIPS’ 98, 1998.

    Google Scholar 

  4. M. Brand. Pattern discovery via entropy minimization. Technical Report TR98-21, Mitsubishi Electric Research Lab, 1998. Available at http://www.merl.com .

  5. C. Bregler and S. M. Omohundro. Nonlinear manifold learning for visual speech recognition. In Proceedings of International Conference on Computer Vision, pages 494–499, Cambridge, MA, June 1995.

    Google Scholar 

  6. T.-J. Cham and J. M. Rehg. A multiple hypothesis approach to figure tracking. In Computer Vision and Pattern Recognition, pages 239–245, 1999.

    Google Scholar 

  7. T. Dean and K. Kanazawa. A model for reasoning about persistance and causation. Computational Intelligence, 5(3), 1989.

    Google Scholar 

  8. Z. Ghahramani. Learning dynamic Bayesian networks. In C. L. Giles and M. Gori, editors, Adaptive processing of temporal information, Lecture notes in artificial intelligence. Springer-Verlag, 1997.

    Google Scholar 

  9. Z. Ghahramani and G. E. Hinton. Switching state-space models. submitted for publication, 1998.

    Google Scholar 

  10. J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien. Animating human athletics. In Computer Graphics (Proc. SIGGRAPH’ 95), pages 71–78, 1995.

    Google Scholar 

  11. V. T. Inman, H. J. Ralston, and F. Todd. Human Walking. Williams and Wilkins, 1981.

    Google Scholar 

  12. M. Isard and A. Blake. A mixed-state CONDENSATION tracker with automatic model-switching. In Proceedings of International Conference on Computer Vision, pages 107–112, Bombay, India, 1998.

    Google Scholar 

  13. F. V. Jensen. An introduction to Bayesian Networks. Springer-Verlag, 1995.

    Google Scholar 

  14. M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. In M. I. Jordan, editor, Learning in graphical models. Kluwer Academic Publishers, 1998.

    Google Scholar 

  15. I. A. Kakadiaris and D. Metaxas. Model-based estimation of 3D human motion with occlusion based on active multi-viewpoint selection. In Computer Vision and Pattern Recognition, pages 81–87, San Fransisco, CA, June 18–20 1996.

    Google Scholar 

  16. R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction. Journal of Basic Engineering (ASME), D(83):95–108, 1961.

    MathSciNet  Google Scholar 

  17. C.-J. Kim. Dynamic linear models with markov-switching. Journal of Econometrics, 60:1–22, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  18. V. Krishnamurthy and J. Evans. Finite-dimensional filters for passive tracking of markov jump linear systems. Automatica, 34(6):765–770, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. D. Morris and J. M. Rehg. Singularity analysis for articulated object tracking. In Computer Vision and Pattern Recognition, pages 289–296, Santa Barbara, CA, June 23–25 1998.

    Google Scholar 

  20. R. M. Neal. Connectionist learning of belief networks. Artificial Intelligence, pages 71–113, 1992.

    Google Scholar 

  21. R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justifies incremental and other variants. In M. Jordan, editor, Learning in graphical models, pages 355–368. Kluwer Academic Publishers, 1998.

    Google Scholar 

  22. V. Pavlovic, B. Frey, and T. S. Huang. Time-series classification using mixed-state dynamic Bayesian networks. In Computer Vision and Pattern Recognition, pages 609–615, June 1999.

    Google Scholar 

  23. J. Pearl. Probabilistic reasoning in intelligent systems. Morgan Kaufmann, San Mateo, CA, 1998.

    Google Scholar 

  24. L. R. Rabiner and B. Juang. Fundamentals of Speech Recognition. Prentice Hall, Englewood Clifis, New Jersey, USA, 1993.

    Google Scholar 

  25. H. E. Rauch. Solutions to the linear smoothing problem. IEEE Trans. Automatic Control, AC-8(4):371–372, October 1963.

    Article  Google Scholar 

  26. R. H. Shumway and D. S. Stoffer. Dynamic linear models with switching. Journal of the American Statistical Association, 86(415):763–769, September 1991.

    Article  MathSciNet  Google Scholar 

  27. C. R. Wren and A. P. Pentland. Dynamic models of human motion. In Proceeding of the Third International Conference on Automatic Face and Gesture Recognition, pages 22–27, Nara, Japan, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pavlović, V., Rehg, J.M., Cham, TJ. (2000). A Dynamic Bayesian Network Approach to Tracking Using Learned Switching Dynamic Models. In: Lynch, N., Krogh, B.H. (eds) Hybrid Systems: Computation and Control. HSCC 2000. Lecture Notes in Computer Science, vol 1790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46430-1_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-46430-1_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67259-3

  • Online ISBN: 978-3-540-46430-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics