Skip to main content

Bose-Einstein to BCS Crossover as a Model for High-T c Cuprate Superconductors

  • Conference paper
  • First Online:
New Developments in High Temperature Superconductivity

Part of the book series: Lecture Notes in Physics ((LNP,volume 545))

Abstract

Crossover from Bose-Einstein (BE) to BCS condensation can be a guiding principle in understanding the evolution of high-T c cuprate superconductors as a function of carrier doping. This picture is developed by combining two experimental results: (1) the “universal correlations” between T c and n s/m* (superconducting carrier density / effective mass) found in nSR measurements of the magnetic field penetration depth λ and (2) the “pseudo gap” behavior observed in NMR, neutron scattering, dc- and optical conductivity, specific heat, and most-recently in angle-resolved photoemission (ARPES) measurements. Here we provide a critical review of these experimental results and the relevant theoretical work in order to elucidate the essential features of this crossover picture and to discuss condensation mechanisms in the cuprates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example: Tilley D.R., Tilley J. (1990) Superfluidity and Superconductivity, Adam Hilger, Bristol

    Google Scholar 

  2. Bardeen J., Cooper L.N., Schrieffer J.R. (1957) Phys Rev 108:1175–1204

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bednorz J.G., Müller K.A. (1986) Z Phys B 64:189; Bednorz J.G., Müller K.A. (1988) Rev Mod Phys 60:585-600

    Article  ADS  Google Scholar 

  4. See, for example, papers published in: Salje E.K.H., Alexandrov A.S., Liang W.Y. (Eds.) (1995) Polarons and Bipolarons in High-Tc Superconductors and Related Materials, Cambridge University Press, and references therein

    Google Scholar 

  5. For textbooks and/or review related to the (J.SR technique, see, for example: Schenck A. (1986) Muon Spin Rotation Spectroscopy, Adam Hilger, Bristol; Yamazaki T., Nakai K., Nagamine K. (Eds.) (1992) Perspectives of Meson Science, North Holland, Amsterdam; Karlsson E.B. (1995) Solid State Phenomena as Seen by Muons, Protons and Excited Nuclei, Oxford University Press

    Google Scholar 

  6. Redfield A.G. (1967) Phys Rev B 162:367–374

    Article  ADS  Google Scholar 

  7. Pincus P. (1964) Phys Lett 13:21–22

    Article  ADS  Google Scholar 

  8. Barford W., Gunn J.M.F. (1988) Physica C 156:515–522

    Article  ADS  Google Scholar 

  9. Aeppli G., et al. (1987) Phys Rev B 35:7130–7132

    Article  ADS  Google Scholar 

  10. Kossler W.J., et al. (1987) Phys Rev B 35:7133–7136

    Article  ADS  Google Scholar 

  11. Gygax F., et al. (1987) Europhys Lett 4:437–439

    Article  Google Scholar 

  12. Uemura Y.J., et al. (1988) Phys Rev B 38:909–912

    Article  ADS  Google Scholar 

  13. Uemura Y.J., et al. (1989) Phys Rev Lett 62:2317–2320

    Article  ADS  Google Scholar 

  14. Piimpin B., et al. (1990) Hyperf Interact 63:25–31

    Article  ADS  Google Scholar 

  15. Gliickler H. et al. (1990) Hyperf Interact 63:155–160

    Article  ADS  Google Scholar 

  16. Seaman C.L. et al. (1990) Phys Rev B 42:6801–6804

    Article  ADS  MathSciNet  Google Scholar 

  17. Tallon J.L. et al. (1995) Phys Rev Lett 74:1008–1011

    Article  ADS  Google Scholar 

  18. Basov D.N. et al. (1995) Phys Rev Lett 74:598–601

    Article  ADS  Google Scholar 

  19. Uemura Y.J. et al. (1991) Phys Rev Lett 66:2665–2668

    Article  ADS  Google Scholar 

  20. Uemura Y.J. et al. (1991) Nature 352:605–607; Uemura Y.J. et al. (1994) Physica C 235–240:2501-2502

    Article  ADS  Google Scholar 

  21. Uemura Y.J, Luke G.M. (1993) Physica B 186–188:223–228; Uemura Y.J, Le L.P, Luke G.M. (1993) Synthet Met 55–57:2845-2852

    Article  ADS  Google Scholar 

  22. Uemura Y.J. et al. (1990) In: Kresin V.Z, Little W.A. (Eds.) Organic Superconductivity, Plenum, New York, 23–29; Le L.P. et al. (1992) Phys Rev Lett 68:1923-1926

    Google Scholar 

  23. Pistolesi E, Strinati G.C. (1994) Phys Rev B 49:6356–6359

    Article  ADS  Google Scholar 

  24. Friedberg R, Lee T.D, Ren H.C. (1990) Phys Rev B 42:4122–4134; Friedberg R, Lee T.D, Ren H.C. (1991) Phys Lett A 152:423-429

    Article  ADS  Google Scholar 

  25. Yasuoka H, Imai T, Shimizu T. (1989) In: Fukuyama H. (Ed.) Spin Correlations and Superconductivity, Springer, Berlin, 254–261; Yasuoka H. (1997) Hyperf Interact 105:27-34 and references therein

    Google Scholar 

  26. Warren W.W. et al. (1989) Phys Rev Lett 62:1193–1196; Walstedt R.E. et al. (1990) Phys Rev B 41:9574-9576

    Article  ADS  Google Scholar 

  27. Takigawa M. et al. (1989) Physica C 162–164:853–856; Takigawa M. et al. (1991) Phys Rev B 43:247-257

    Article  ADS  Google Scholar 

  28. Alloul H, Ohno T, Mendels P. (1989) Phys Rev Lett 63:1700–1703

    Article  ADS  Google Scholar 

  29. Matsuura M. et al. (1995) J Phys Soc Jpn 64:721–724

    Article  ADS  Google Scholar 

  30. Rossat-Mignod J. et al. (1991) Physica C 185–189:86–92; Rossat-Mignod J. et al. (1992) Phys Scr T45:74

    Article  ADS  Google Scholar 

  31. Tranquada J.M. et al. (1992) Phys Rev B 46:5561–5575

    Article  ADS  Google Scholar 

  32. Ito T. et al. (1991) Nature 350:596–598

    Article  ADS  Google Scholar 

  33. Nakamura Y., Uchida S. (1993) Phys Rev B 47:8369–8372; Takenaka K. et al. (1994) Phys Rev B 50:6534-6537

    Article  ADS  Google Scholar 

  34. Homes C.C. et al. (1993) Phys Rev Lett 71:1645–1648

    Article  ADS  Google Scholar 

  35. Takagi H. et al. (1992) Phys Rev Lett 69:2975–2978; Ito T., Takenaka K., Uchida S. (1993) Phys Rev Lett 70:3995-3998

    Article  ADS  Google Scholar 

  36. Batlogg B. et al. (1994) Physica C 235–240:130–133

    Article  ADS  Google Scholar 

  37. Nakano T. et al. (1994) Phys Rev B 49:16000–16008

    Article  ADS  Google Scholar 

  38. Loram J.W. et al. (1993) Phys Rev Lett 71:1740–1743

    Article  ADS  Google Scholar 

  39. Marshall D.S. et al. (1996) Phys Rev Lett 76:4841–4844; Marshall D.S. et al. (1996) Science 273:325-329

    Article  ADS  Google Scholar 

  40. Ding H. et al. (1996) Nature 382:51–54

    Article  ADS  Google Scholar 

  41. Uemura Y.J. (1993) At: Euroconference on Superconductivity in Fullerenes, Oxides and Organic Materials, Pisa, Italy, January 1993, not published

    Google Scholar 

  42. Uemura Y.J. (1995) In: Salje E.K.H., Alexandrov A.S., Liang W.Y. (Eds.) Proc. of the Workshop on “Polarons and Bipolarons in High-Tc Superconductors and Related Materials”, Cambridge, UK, April 1994. Cambridge University Press, 453–460; Uemura Y.J. (1995) In: Feng S., Ren H.C. (Eds.) High-Tc Superconductivity and the Ceo Family, CCAST Symposium on..., Beijing, May 1994.Gordon and Breach, 113-142

    Google Scholar 

  43. Uemura Y.J. (1997) Physica C 282–287:194–197

    Article  ADS  Google Scholar 

  44. Eagles D.M. (1969) Phys Rev 186:456–463

    Article  ADS  Google Scholar 

  45. Leggett A.J. (1980) In: Pekalski A., Przystawa R. (Eds.) Modern Trends in the Theory of Condensed Matter, Springer, Berlin

    Google Scholar 

  46. Nozieres P., Schmitt-Rink S. (1985) J Low Temp Phys 59:195–211

    Article  ADS  Google Scholar 

  47. Micnas R., Ranninger J., Robaszkiewicz S. (1990) Rev Mod Phys 62:113–171

    Article  ADS  Google Scholar 

  48. Randeria M. (1995) In: Griffin A., Snoke D.W., Stringari S. (Eds.) Bose Einstein Condensation, Cambridge University Press, 355–391

    Google Scholar 

  49. Lee T.D. (1994) Physica C 235–240:186–188; Friedberg R., Lee T.D., Ren H.C. (1994) Phys Rev B 50:10190-10 217

    Article  ADS  Google Scholar 

  50. Ranninger J. (1994) Physica C 235–240:277–280

    Article  ADS  Google Scholar 

  51. Pistolesi F., Strinati G.C. (1996) Phys Rev B 53:15168–15192; and references therein

    Article  ADS  Google Scholar 

  52. Micnas R., Robaszkiewicz S., Kostyrko T. (1995) Phys Rev B 52:6863–6879; Micnas R., Kostyrko T. (1996) In: Klamut J. et al. (Eds.) Recent Developments in High Temperature Superconductivity, Lecture Notes in Physics vol. 475, Springer, Berlin Heidelberg, 221-242

    Article  ADS  Google Scholar 

  53. Pietronero L., Strassler S. (1992) Europhys Lett 18:627–633

    Article  ADS  Google Scholar 

  54. Enz C.P. (1989) Helv Phys Acta 62:122–138; Enz C.P., Galasiewicz Z.M. (1988) Solid State Commun 66:49-50; Enz C.P., Galasiewicz Z.M. (1993) Physica C 214:239-246

    Google Scholar 

  55. van der Marel D., Mooij J.E. (1992) Phys Rev B 45:9940–9950

    Article  ADS  Google Scholar 

  56. Tokumitsu A., Miyake K., Yamada K. (1993) Phys Rev B 47:11988–12003

    Article  ADS  Google Scholar 

  57. Drechsler M., Zwerger W. (1992) Ann Physik 1:15–23

    Article  ADS  Google Scholar 

  58. Randeria M. et al. (1992) Phys Rev Lett 69:2001–2004

    Article  ADS  Google Scholar 

  59. Sa de Melo C.A.R., Randeria M., Engelbrecht J.R. (1993) Phys Rev Lett 71:3202–3205

    Article  ADS  Google Scholar 

  60. Mott N.F. (1990) Adv Phys 39:55–81

    Article  ADS  Google Scholar 

  61. Schneider T., Keller H.J. (1992) Phys Rev Lett 69:3374–3377

    Article  ADS  Google Scholar 

  62. See, for example: Nozieres P. (1995) In: Griffin A., Snoke D.W., Stringari S. (Eds.) Bose Einstein Condensation, Cambridge University Press, 15–31

    Google Scholar 

  63. Doniach S., Inui M. (1990) Phys Rev B 41:6668–6678

    Article  ADS  Google Scholar 

  64. Emery V.J., Kivelson S.A. (1995) Nature 374:434–437

    Article  ADS  Google Scholar 

  65. Tchernyshyov O. (1997) Phys Rev B 56:3372

    Article  ADS  Google Scholar 

  66. Anderson P.W. (1987) Science 235:1196–1198

    Article  ADS  Google Scholar 

  67. Anderson P.W. (1973) Mater Res Bull 8:153; Fazekas P., Anderson P.W. (1970) Phil Mag 30:432-440

    Article  Google Scholar 

  68. Nagaosa N., Lee P.A. (1990) Phys Rev Lett 64:2450–2453; Lee P.A., Nagaosa N. (1992) Phys Rev B 46:5621-5639

    Article  ADS  Google Scholar 

  69. Suzumura Y., Hasegawa Y., Fukuyama H. (1988) J Phys Soc Jpn 57:2768; Tanamoto T., Kuboki K., Fukuyama H. (1991) J Phys Soc Jpn 60:3072-3092

    Article  ADS  Google Scholar 

  70. Kim C. et al. (1996) Phys Rev Lett 77:4054–4057

    Article  ADS  Google Scholar 

  71. See, for example: Timusk T., Tanner R.B. (1989) In: Ginsberg G.M. (Ed.) Physical Properties of High-Temperature Superconductors I, World Sci., Singapore, 339–407; Tanner R.B., Timusk T. (1992) In: Ginsberg G.M. (Ed.) Physical Properties of High-Temperature Superconductors III, World Sci., Singapore, 363-469, and references therein. See also: Uchida S. (1995) In: Feng S., Ren H.C. (Eds.) Proc. CCAST Symposium on High-Tc Superconductivity and the Ceo Family, Beijing, May 1994, Gordon and Breach, London, 199-249

    Google Scholar 

  72. Uemura Y.J. (1996) In: Batlogg B. et al. (Eds.) Proc. 10th Anniversary Workshop of High-Tc Superconductors, Houston, March 1996, World Sci., Singapore, 68–71; Uemura Y.J. (1997) Hyperf Interact 105:35-46

    Google Scholar 

  73. Uemura Y.J. et al. (1993) Nature 364:605

    Article  ADS  Google Scholar 

  74. Niedermayer Ch. et al. (1993) Phys Rev Lett 71:1764

    Article  ADS  Google Scholar 

  75. Bose S.N. (1924) Z. Phys. 26:178; Einstein A. (1924) Sitzber Kgl Preuss Akad Wiss 261; Einstein A. (1925) Sitzber Kgl Preuss Akad Wiss 3

    Article  ADS  Google Scholar 

  76. Jin D.S. et al. (1996) Phys Rev Lett 77:420–423

    Article  ADS  Google Scholar 

  77. Mewes M.-O. et al. (1996) Phys Rev Lett 77:416–419

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uemura, Y.J. (2000). Bose-Einstein to BCS Crossover as a Model for High-T c Cuprate Superconductors. In: Klamut, J., Veal, B.W., Dabrowski, B.M., Klamut, P.W., Kazimierski, M. (eds) New Developments in High Temperature Superconductivity. Lecture Notes in Physics, vol 545. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46511-1_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-46511-1_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67188-6

  • Online ISBN: 978-3-540-46511-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics