Skip to main content

Microstructures in Rough Metal Surfaces: Electromagnetic Mechanism in Surface-Enhanced Raman Spectroscopy

  • Conference paper
  • First Online:
Light Scattering from Microstructures

Part of the book series: Lecture Notes in Physics ((LNP,volume 534))

Abstract

One of the two fundamental mechanisms underlying Surface-Enhanced Raman Scattering (SERS) is the existence of large electromagnetic (EM) fields in the vicinity of the rough metal substrates that are used as substrates. Surface roughness below the micron scale plays a relevant role in this process, due to the roughness-induced excitation of surface-plasmon polaritons. Since in many scattering configurations dipolar and/or electrostatic approximations cannot be employed, we study this EM mechanism from the rigorous standpoint of classical Maxwell equations. By means of numerical simulation calculations based on the Green’s theorem integral equation formulation, the linearly polarized electro- magnetic field scattered from one-dimensional, randomly rough metal surfaces is obtained. In particular, Ag, Au, and Cu surfaces are considered possessing fractal properties analogous to those observed in colloidal aggregates or coldly deposited films commonly used in SERS experiments. We analyze the influence of the roughness parameters on the near field intensity. The enhancement factor of the SERS signal is assumed to be proportional to the square of that of the near field intensity at the pump frequency; in light of the random nature of the roughness, the analysis is performed on the probability density function of the enhancement factor. The optimum pump frequency is obtained from the spectral dependence of both the average field enhancement and the absorption. In addition to the near field intensity calculations, the far field scattered from such random self-affine fractals is studied, revealing interesting features in the angular distribution, such as incoherent peaks at the specular direction, and weak backscattering peaks for the rougher surfaces that also yield large near field enhancements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan (1974) Chem. Phys. Lett. 26, 123

    Article  ADS  Google Scholar 

  2. D. L. Jeanmaire and R. P. VanDuyne (1977) J. Electroanal. Chem. 84, 1

    Article  CAS  Google Scholar 

  3. M. G. Albrecht and J. A. Creighton (1977) J. Am. Chem. Soc. 99, 5215

    Article  CAS  Google Scholar 

  4. A. Otto (1984) in Light Scattering in Solids IV, edited by M. Cardona and G. Günthrerodt (Springer-Verlag, Berlin), p. 28

    Google Scholar 

  5. M. Moskovits (1985) Rev. Mod. Phys. 57, 783

    Article  ADS  CAS  Google Scholar 

  6. A. Wokaun (1985) Molecular Phys. 53, 1

    Article  ADS  Google Scholar 

  7. A. Otto (1991) J. Raman Spectrosc. 22, 743

    Article  CAS  ADS  Google Scholar 

  8. A. Otto, I. Mrozek (1992) H. Grabhorn, and W. Akemann, J. Phys. Condens. Matter 4, 1143

    Article  ADS  CAS  Google Scholar 

  9. R. Aroca and G. Kovacs (1991) in Vibrational Spectra and Structure, edited by J. R. Durig (Elsevier, Amsterdam), Vol. 19, p. 55.

    Google Scholar 

  10. A. Otto (1980) Surf. Sci. 57, 309

    Google Scholar 

  11. V. M. Shalaev (1996) Phys. Rep. 272, 61

    Article  ADS  CAS  Google Scholar 

  12. H. Raether (1988) Surface Polaritons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin).

    Google Scholar 

  13. S. Sánchez-Cortés, J. V. García-Ramos, and G. Morcillo (1994) J. Colloid Interface Sci. 167, 428; S. Sánchez-Cortés, J. V. García-Ramos, G. Morcillo, and A. Tinti (1995) J. Colloid Interface Sci. 175, 358

    Article  Google Scholar 

  14. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet (1994) Phys. Rev. Lett. 72, 4149

    Article  PubMed  ADS  CAS  Google Scholar 

  15. M. C. Chen, S. P. Tsai, M. R. Chen, S. Y. Ou, W.-H. Li, and K. C. Lee (1995) Phys. Rev. B 51, 4507

    ADS  Google Scholar 

  16. J. V. García-Ramos and S. Sánchez-Cortés (1997) J. Mol. Struct. 405, 13

    Article  ADS  Google Scholar 

  17. C. Douketis, Z. Wang, T. L. Haslett, and M. Moskovits (1995) Phys. Rev. B51, 11022

    ADS  Google Scholar 

  18. R. Jullien and R. Botet ( 1987) Aggregation and Fractal Aggregates (World Scientific, Singapore)

    MATH  Google Scholar 

  19. A.-L. Barabási and H. E. Stanley (1995) Fractal Concepts in Surface Growth (University Press, Cambridge)

    Book  MATH  Google Scholar 

  20. M. Xu and M. J. Dignam, J. Chem. Phys. 96, 7758 (1992); 99, 2307 (1993); 100, 197 (1994)

    Article  ADS  CAS  Google Scholar 

  21. E. Y. Poliakov, V. M. Shalaev, V. A. Markel, and R. Botet (1996) Opt. Lett. 21, 1628

    Article  ADS  CAS  Google Scholar 

  22. F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev (1997) Phys. Rev. B 55, 13 234

    Google Scholar 

  23. F. J. Vidal and J. B. Pendry (1996) Phys. Rev. Lett. 77, 1163

    Article  ADS  Google Scholar 

  24. J. A. Sánchez-Gil and J. V. García-Ramos (1997) Opt. Commun. 134, 11

    Google Scholar 

  25. J. A. Sánchez-Gil and J. V. García-Ramos (1997) Waves in Random Media 7, 285

    Article  MATH  ADS  Google Scholar 

  26. J. A. Sánchez-Gil and J. V. García-Ramos (1998) J. Chem. Phys. 108, 317

    Article  ADS  Google Scholar 

  27. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez (1990) Ann. Phys. NY 203, 255

    Article  ADS  CAS  Google Scholar 

  28. J. A. Sánchez-Gil and M. Nieto-Vesperinas(1991) J. Opt. Soc. Am. A 8, 1270; (1992) Phys. Rev. B 45, 8623

    Article  ADS  Google Scholar 

  29. M. Nieto-Vesperinas (1991) Scattering and Diffraction in Physical Optics (Wiley, New York)

    Google Scholar 

  30. M. Nieto-Vesperinas and J. A. Sánchez-Gil (1992) J. Opt. Soc. Am. A 9, 424

    Article  ADS  Google Scholar 

  31. R. F. Voss (1989) in: The Science of Fractal Images, edited by H.-O. Peitgen and D. Saupe (Springer, Berlin, 1988); R. F. Voss, Physica D 38, 362

    Google Scholar 

  32. D. W. Lynch and W. R. Hunter (1985) in: Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic Press, New York), p. 356.

    Google Scholar 

  33. J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, to be published.

    Google Scholar 

  34. E. R. Méndez, J. A. Sánchez-Gil, and J. V. García-Ramos, to be published.

    Google Scholar 

  35. S. Nie and S. R. Emory (1997) Science 275, 1102

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sánchez-Gil, J.A., García-Ramos, J.V., Méndez, E.R. (2000). Microstructures in Rough Metal Surfaces: Electromagnetic Mechanism in Surface-Enhanced Raman Spectroscopy. In: Moreno, F., González, F. (eds) Light Scattering from Microstructures. Lecture Notes in Physics, vol 534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46614-2_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-46614-2_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66937-1

  • Online ISBN: 978-3-540-46614-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics