Skip to main content

Reduced Models of Magnetohydrodynamic Turbulence in the Interstellar Medium and the Solar Wind

  • Conference paper
  • First Online:
Nonlinear MHD Waves and Turbulence

Part of the book series: Lecture Notes in Physics ((LNP,volume 536))

  • 700 Accesses

Abstract

Recent developments in the derivation of reduced models for weakly compressible magnetohydrodynamic (MHD) turbulence are discussed. A four-field system of equations has been derived from the compressible magnetohydrodynamic (MHD) equations to describe turbulence in the interstellar medium and the solar wind. These equations apply to a plasma permeated by a spatially varying mean magnetic field when the plasma beta is of the order unity or less. In the presence of spatial inhomogeneities, the four-field equations predict pressure fluctuations of the order of the Mach number of the turbulence, as observed by Helios 1 and 2. In the presence of a uniform background field and a spatially homogeneous plasma, the four-field system reduces to the so-called nearly incompressible system. In the weak-turbulence limit, dominated by three-wave interactions, the anisotropic energy spectrum is deduced by a combination of exact analytical results and numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zank, G. P., Matthaeus, W. H. (1992) The equations of reduced magnetohydrodynamics. J. Plasma Phys. 48, 85

    Article  ADS  Google Scholar 

  2. Zank, G. P., Matthaeus, W. H. (1993) Nearly incompressible fluids. II: Magnetohydrodynamics, turbulence, and waves. Phys. Fluids A 5, 257

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Lighthill, M. J. (1952) On sound generated aerodynamically, I. General Theory. Proc. R. Soc. London Ser. A 211, 564

    MATH  MathSciNet  Google Scholar 

  4. Montgomery, D., Brown, M., Matthaeus, W. H. (1987) Density fluctuation spectra in magnetohydrodynamic turbulence. J. Geophys. Res. 92, 282

    Article  ADS  Google Scholar 

  5. Shebalin, J. V., Montgomery, D. (1988) Turbulent magnetohydrodynamic density fluctuations. J. Plasma Phys. 39, 339

    Article  ADS  Google Scholar 

  6. Matthaeus, W., Brown, M. R. (1988) Nearly incompressible magnetohydrodynamics at low Mach-number. Phys. Fluids 31, 3634

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Zank, G. P., Matthaeus, W. H. (1991) The equations of nearly incompressible fluids. I. Hydrodynamics, turbulence and waves. Phys. Fluids A 3, 69

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Grappin, Velli, R. M., Mangeney, A. (1991) “Alfvénic” versus “standard” turbulence in the solar wind. Ann. Geophys. 9, 416

    ADS  Google Scholar 

  9. Kliatskin, V. I. (1966) Homogeneous isotropic turbulence in weakly compressible media. Izv. Atmos. Oceanic Phys. 2, 474

    Google Scholar 

  10. Strauss, H. R. (1976) Nonlinear three-dimensional magnetohydrodynamics of noncircular tokamaks. Phys. Fluids 19, 134

    Article  ADS  Google Scholar 

  11. Matthaeus, W. H., Klein, L. W., Ghosh, S., Brown, M. R. (1991) Nearly incompressible magnetohydrodynamics and solar wind fluctuations. J. Geophys. Res. 96, 5421

    Article  ADS  Google Scholar 

  12. Tu, C.-Y., Marsch, E. (1994) On the nature of compressive fluctuations in the solar wind. J. Geophys. Res. 99, 21481

    Article  ADS  Google Scholar 

  13. Bavassano, B., Bruno, R., Klein, L. (1995) Density-temperature correlation in Solar-wind magnetohydrodynamic.uctuations—a test for nearly incompressible models. J. Geophys. Res. 100, 5871

    Article  ADS  Google Scholar 

  14. Bhattacharjee, A., Ng, C. S., Spangler, S. R. (1998) Weakly compressible magnetohydrodynamic turbulence in the solar wind and the interstellar medium. Astrophys. J. 494, 409

    Article  ADS  Google Scholar 

  15. Armstrong, J. W., Coles, W. A., Kojima, K., Rickett, B. J. (1990) Observations of field-aligned density fluctuations in the inner solar wind. Astrophys. J. 358, 685

    Article  ADS  Google Scholar 

  16. Grall, R. R., Coles, W. A., Spangler, S. R., Sakurai, T., Harmon, J. K. (1997) Observations of field-aligned density microstructure near the Sun. J. Geophys. Res. 102, 263

    Article  ADS  Google Scholar 

  17. Wilkinson, P. N., Narayan, R., Spencer, R. E. (1994) MNRAS 269, 67

    ADS  Google Scholar 

  18. Frail, D. A., Diamond, P. J., Cordes, J. M., Van Langevelde, H. J. (1994) Anisotropic scattering of OH/IR stars toward the galactic center. Astrophys. J. 427, L43

    Article  ADS  Google Scholar 

  19. Molnar, L. A., Mutel, R. L., Reid, M. J., Johnston, K. J. (1995) Interstellar scattering toward cygnus X-3: measurements of anisotropy and of the inner scale. Astrophys. J. 438, 708

    Article  ADS  Google Scholar 

  20. Sridhar, S., Goldreich, P. (1994) Toward a theory of interstellar turbulence. I. weak Alfvénic turbulence. Astrophys. J. 432, 612

    Article  ADS  Google Scholar 

  21. Montgomery, D., Matthaeus, W. H. (1995) Anisotropic modal energy transfer in interstellar turbulence. Astrophys. J. 447, 706

    Article  ADS  Google Scholar 

  22. Ng, C. S., Bhattacharjee, A. (1996) Interaction of shear-Alfvén wave packets: implication for weak magnetohydrodynamic turbulence in astrophysical plasmas. Astrophys. J. 465, 845

    Article  ADS  Google Scholar 

  23. Chen, S, Kraichnan, R. H. (1997) Inhibition of turbulence cascade by sweep. J. Plasma Phys. 57, 187

    Article  ADS  Google Scholar 

  24. Goldreich, P., Sridhar, S. (1997) Magnetohydrodynamic turbulence revisited. Astrophys. J. 485, 680

    Article  ADS  Google Scholar 

  25. Galtier, S., Nazarenko, S., Newell, A. C., Pouquet, A. (1998) A weak turbulence theory for incompressible magnetohydrodynamics. These proceedings

    Google Scholar 

  26. Iroshnikov, P. S. (1963) The turbulence of a conducting fluid in a strong magnetic field. Astron. Zh. 40, 742

    ADS  Google Scholar 

  27. Kraichnan, R. H. (1965) Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8 1385

    Article  MathSciNet  ADS  Google Scholar 

  28. Ng, C. S., Bhattacharjee, A. (1997) Scaling of anisotropic spectra due to the weak interaction of shear-Alfvén wave packets. Phys. Plasma 4, 605

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bhattacharjee, A., Ng, C. (1999). Reduced Models of Magnetohydrodynamic Turbulence in the Interstellar Medium and the Solar Wind. In: Passot, T., Sulem, PL. (eds) Nonlinear MHD Waves and Turbulence. Lecture Notes in Physics, vol 536. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47038-7_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-47038-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66697-4

  • Online ISBN: 978-3-540-47038-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics