Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 325))

  • 208 Accesses

Abstract

In this review the single-particle resonance is identified with the Gamow function, the solution of the stationary Schrödinger equation with purely outgoing asymptotics. Its properties and the working rules related to it are presented. Two numerical methods and the corresponding codes developed in nuclear physics are reviewed : the direct numerical integration and an efficient and flexible approximation based on the separable expansion of the potential. Examples are given for calculating neutron and proton resonances in spherical and deformed potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References.

  1. P. A. M. Dirac, The principles of quantum mechanics, Clarendon Press, Oxford (1956).

    Google Scholar 

  2. H. Feshbach, Ann. Phys. N. Y., 5, 357 (1958); 19 287 (1962); H. Feshbach, A. K. Kerman and R. H. Lemmer, Ann. Phys., N. Y., 41, 41 (1967).

    Article  Google Scholar 

  3. C. Mahaux and H. A. WeidenmĂĽller, Shell model approach to nuclear reactions, North Holland, Amsterdam, (1969).

    Google Scholar 

  4. E. Goldberg, Phys. Rev., 89, 760 (1953).

    Article  Google Scholar 

  5. R. Huby and J. R. Mines, Proc. of the Conf. on Direct Interactions and Nuclear Reaction Mechanisms, E. Clemental and C. Villi, Eds., Gordon and Breach, New York-London, (1963) p. 530.

    Google Scholar 

  6. J. L. Alty, L. L. Green, R. Huby, G. D. Jones, J. R. Mines and J. F. Sharpey-Shafer, Phys. Lett., 20, 664 (1966); J. L. Alty, L. L. Green, R. Huby, G. D. Jones, J. R. Mines and J. F. Sharpey-Shafer, Nucl. Phys., 97A, 541 (1967).

    Google Scholar 

  7. J. Bang and J. Zimányi, Nucl. Phys., 139A, 534 (1969).

    Google Scholar 

  8. H. T. Fortune and C. M. Vincent, Phys. Rev., 185, 1401 (1969).

    Google Scholar 

  9. C. M. Vincent and H. T. Fortune, Phys. Rev., 2C, 782 (1970).

    Google Scholar 

  10. V. E. Bunakov, Nucl. Phys., 140A, 241 (1970).

    Google Scholar 

  11. V. E. Bunakov, K. A. Gridnev and L. V. Krasnov, Phys. Lett., 32B,587 (1970).

    Google Scholar 

  12. T. Berggren, Nucl. Phys., 109A, 265 (1968).

    Google Scholar 

  13. W. Romo, Nucl. Phys., 116A, 618 (1968).

    Google Scholar 

  14. G. Gamow, Z. Phys., 51, 204 (1928).

    Google Scholar 

  15. L. A. Khalfin, Sov. Phys. JETP, 6, 1053 (1958).

    Google Scholar 

  16. B. Gyarmati, F. Krisztinkovics and T. Vertse, Phys. Lett., 41B, 110 (1972).

    Google Scholar 

  17. C. Mahaux and A. M. Saruis, Nucl. Phys., 177A, 103 (1971).

    Google Scholar 

  18. G. H. Hardy, Divergent Series, Clarendon Press, Oxford (1949).

    Google Scholar 

  19. B. Gyarmati and T. Vertse, Nucl. Phys., 160A, 523 (1971).

    Google Scholar 

  20. W. J. Romo, Nucl. Phys., 398A, 525 (1983).

    Google Scholar 

  21. T. Berggren, Phys. Lett., 38B, 61 (1972).

    Google Scholar 

  22. E. Hernández and A. Mondragón, Phys. Rev., 29C 722 (1984).

    Google Scholar 

  23. B. Gyarmati, A. T. Kruppa and Z. Papp, Phys. Rev., 31C, 2317 (1985).

    Google Scholar 

  24. T. Vertse, K. F. Pál and Z. Balogh, Comp. Phys. Comm., 27, 309 (1982).

    Google Scholar 

  25. Z. Balogh, Diploma thesis, ATOMKI, Debrecen Hungary, (1977).

    Google Scholar 

  26. A. T. Kruppa and Z. Papp, Comp. Phys. Comm., 36, 59 (1985).

    Google Scholar 

  27. B. Gyarmati, A. T. Kruppa and J. Revai, Nucl. Phys., 326A, 119 (1979).

    Google Scholar 

  28. B. Gyarmati, A. T. Kruppa, Z. Papp and G. Wolf, Nucl. Phys., 417A, 393 (1984).

    Google Scholar 

  29. J. Bang, F. A. Gareev, I. V. Puzynin and R. M. Jamalejev, Nucl. Phys., 261A, 59 (1975).

    Google Scholar 

  30. Z. Papp, J. Phys. A, 20, 153 (1987).

    Google Scholar 

  31. B. Gyarmati and A. T. Kruppa, Phys. Rev., 34C, 95 (1986).

    Google Scholar 

  32. M. Reed and B. Simon, Methods of modern mathematical physics, Academic Press, New York (1978).

    Google Scholar 

  33. K. F. Pál, J. Phys. A, 18, 1665 (1985).

    Google Scholar 

  34. B. Gyarmati, R. G. Lovas and J. Zimányi, Phys. Lett., 35B, 549 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erkki Brändas Nils Elander

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Gyarmati, B. (1989). Calculation of resonant wave functions in nuclear physics. In: Brändas, E., Elander, N. (eds) Resonances The Unifying Route Towards the Formulation of Dynamical Processes Foundations and Applications in Nuclear, Atomic and Molecular Physics. Lecture Notes in Physics, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-50994-1_40

Download citation

  • DOI: https://doi.org/10.1007/3-540-50994-1_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50994-3

  • Online ISBN: 978-3-540-46130-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics