Skip to main content

Incorporating knowledge via regularization theory: applications in vision and image processing

  • Vision And Robotics
  • Conference paper
  • First Online:
AI '88 (AI 1988)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 406))

Included in the following conference series:

  • 119 Accesses

Abstract

In computer vision one is faced with the task of discovering the nature of objects that produced the light intensity distribution received by the camera. In order to solve this problem, one usually uses knowledge of the optics, the reflectance properties of surfaces, and of the structure of the objects one is expecting to find in a given scene. In many problems in image processing one is trying to use knowledge of the imaged objects, or of the image formation process, to reconstruct a better image from a degraded image.

A proper computational formulation of these problems recognises that they involve inverse processes that are mathematically ill-posed. This allows one to derive systematically, computational schemes based upon regularization theory that ensure existence of solution and stability of inversion process.

Such approaches often suggest particular types of algorithms for efficient solution to the problems. These, in turn, often are suggestive of implementations that are highly parallel, require only local information and simple operations. These implementations have the essential features of neural network approaches to computation; we present simulations of these.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. K. P. Horn and M. J. Brooks ”The Variational Approach to Shape from Shading,” Computer Vision, Graphics, and Image Processing, Vol. 33, pp. 174–208, 1986.

    Google Scholar 

  2. D. Marr Vision, Freeman, San Francisco, 1982.

    Google Scholar 

  3. V. A. Mozorov ”Methods for Solving Incorrectly Posed Problems,” Springer-Verlag, New York, 1984.

    Google Scholar 

  4. D. Terzopoulos ”Regularization of Inverse Visual Problems Involving Discontinuities,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 8 No. 4, pp. 413–424, June 1986.

    Google Scholar 

  5. T. Poggio and C. Koch ”Ill-posed problems in early vision: from computational theory to analogue networks,” Proc. R. Soc. Lond, Vol. B 226, pp. 303–323, 1985

    Google Scholar 

  6. M. Bertero, P. Brianzi, E. R. Pike, and L. Rebolia ”Linear regularizing algorithms for positive solutions of linear inverse problems,” Proc. R. Soc. Lond., A, Vol. 425, pp. 257–275, 1988.

    Google Scholar 

  7. A. N. Tikhonov, A. V. Goncharskii, V. V. Stepanov, and I. V. Kochikov, ”Ill-posed image processing problems,” Sov. Phys. Dokl., Vol. 32 No. 6, pp. 456–458, June 1987.

    Google Scholar 

  8. T. J. Carmody ”Diagnostics for Multivariate Smoothing Splines,” J. of Statistical Planning and Inference, Vol. 19, pp. 171–186, 1988.

    Google Scholar 

  9. D. Suter and X. Deng ”Neural Net Simulation on Transputers,” Proc. IEEE Systems, Man, and Cybernetics Conf., Beijing, Aug. 1988, (to appear).

    Google Scholar 

  10. D. Shulman and J. Aloimonos ”Boundary Preserving Regularization: Theory Part 1,” University of Maryland, Computer Vision Lab., Tech Report CS-TR-2011, April 1988.

    Google Scholar 

  11. S. Y. Kung ”VLSI Array Processors,” Prentice-Hall, London, 1988.

    Google Scholar 

  12. A. N. Tikhonov and A. V. Goncharsky (Eds.) ”Ill-Posed Problems in the Natural Sciences,” MIT Publishers, Moscow, 1987.

    Google Scholar 

  13. D. Shulman and J. Y. Aloimonos ”(Non)-rigid motion interpretation: a regularized approach,” Proc. R. Soc. Lond. B, pp. 217–234, 1988.

    Google Scholar 

  14. S. P. Luttrell ”The use of Markov random field models to derive sampling schemes for inverse texture problems,” Inverse Problems, Vol. 3, pp. 289–300, 1987.

    Google Scholar 

  15. S. P. Luttrell and C. J. Oliver ”The role of prior knowledge in coherent image processing,” Phil. Trans. R. Soc. Lond. A, Vol. 324, pp. 297–298, 1988.

    Google Scholar 

  16. J. J. Hopfield, ”Neural Networks and Physical Systems with Emergent Collective Computational Abilities,” Proc. Natl. Acad. Sci. USA, Vol. 79, pp. 2554–2558, 1982.

    Google Scholar 

  17. M. Mezard, G. Parisi, and M. Virasoro, ”Spin Glass Theory and Beyond,” World Scientific, Singapore, 1987.

    Google Scholar 

  18. D. Chowdhury, ”Spin Glasses and Other Frustrated Systems,” World Scientific, Singapore, 1987.

    Google Scholar 

  19. J. L. van Hemmen and I. Morgenstern (Ed.), ”Heidelberg Colloquium on Glassy Dynamics,” Lecture Notes in Physics 275, Springer Verlag, Berlin, 1987.

    Google Scholar 

  20. P. J. M. van Laarhoven and E. H. L. Aarts, ”Simulated Annealing: Theory and Applications,” Reidel, Dordrecht, 1987.

    Google Scholar 

  21. W. Jeffrey and R. Rosner, ”Neural Network Processing as a Tool for Function Optimization,” AIP Conference Proc. 151 Neural Networks for Computing, Snowbird, Utah U.S.A., pp. 241–246, 1986.

    Google Scholar 

  22. W. Jeffrey and R. Rosner, ”Optimization Algorithms: Simulated Annealing and Neural Network Processing,” The Astrophysical Journal, Vol. 310, pp. 473–481, Nov. 1986.

    Google Scholar 

  23. S. Geman and D. Geman ”Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images,” IEEE PAMI, Vol. 6, pp. 721–741, 1984.

    Google Scholar 

  24. J. L. Marroquin ”Probabilistic Solution of Inverse Problems,” PhD thesis, MIT, Cambridge MA, Sept. 1985.

    Google Scholar 

  25. J. Marroquin, S. Mitter, and T. Poggio, ”Probabilistic solution of ill-posed problems in computational vision,” J. Am. Stat. Assoc., Vol. 82, pp. 76–89, 1987

    Google Scholar 

  26. D. Geman, ”Stochastic model for boundary detection,” Image and Vision Computing, Vol. 5 No. 2, pp. 61–66, May 1987.

    Google Scholar 

  27. D. W. Murray, A. Kashko and H. Buxton, ”A parallel approach to the picture restoration algorithm of Geman and Geman on an SIMD machine,” Image and Vision Computing, Vol. 4 No. 3, pp. 133–142, Aug. 1986.

    Google Scholar 

  28. B. F. Buxton and D. W. Murray, ”Optic flow segmentation as an ill-posed and maximum likelihood problem,” Image and Vision Computing, Vol. 3 No. 4, pp. 163–169, Nov. 1985.

    Google Scholar 

  29. E. Gamble and T. Poggio, ”Visual Integration and Detection of Discontinuities: The Key Role of Intensity Edges,” ”MIT A.I. Memo No. 970, Oct. 1987.

    Google Scholar 

  30. J. M. Hutchinson and C. Koch, ”Simple Analog and Hybrid Networks for Surface Interpolation,” AIP Conference Proc. 151 Neural Networks for Computing, Snowbird, Utah U.S.A., pp. 235–240, 1986.

    Google Scholar 

  31. A. Blake and A. Zisserman, ”Visual Reconstruction,” MIT Press, Cambridge Mass., 1987.

    Google Scholar 

  32. J. M. Hutchinson, C. Koch, J. Luo and C. Mead, ”Computing Motion using Analog and Binary Resistive Networks,” IEEE Computer, pp. 52–63, March 1988.

    Google Scholar 

  33. D. M. Titterington ”General structure of regularization procedures in image reconstruction,” Astron. Astrophys., Vol. 144, pp. 381–381, 1985.

    Google Scholar 

  34. N. M. Grzywacz and A. Yuille, ”Motion Correspondence and Analog Networks,” AIP Conference Proc. 151 Neural Networks for Computing, Snowbird, Utah U.S.A., pp. 200–205, 1986.

    Google Scholar 

  35. B. M. Forrest, D. Roweth, N. Stroud, D.J. Wallace and G.V. Wilson, ”Implementing Neural Network Models on Parallel Computers,” The Computer Journal, Vol. 30 No. 5, pp. 413–419, 1987.

    Google Scholar 

  36. E. Goles and G. Y. Vichniac, ”Lyapunov Function for Parallel Neural Networks,” AIP Conference Proc. 151 Neural Networks for Computing, Snowbird, Utah U.S.A., pp. 129–134, 1986.

    Google Scholar 

  37. R. Divko and K. Schulten, ”Stochastic Spin Models for Pattern Recognition,” AIP Conference Proc. 151 Neural Networks for Computing, Snowbird, Utah U.S.A., pp. 129–134, 1986.

    Google Scholar 

  38. J. L. Marroquin, ”Deterministic Bayesian Estimation of Markov Random Fields with Applications in Computational Vision,” Proc. 1st Int. Conf. on Computer Vision, pp. 597–601, June 8–11, 1987.

    Google Scholar 

  39. D. Terzopoulos, ”Multi-Level Reconstruction of Visual Surfaces,” MIT A.I. memo 671, April 1982.

    Google Scholar 

  40. J. Franklin ”Well-Posed Stochastic Extensions of Ill-Posed Linear Problems,” J. of Mathematical Analysis and Applications, Vol. 31, pp. 682–716, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christopher J. Barter Michael J. Brooks

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suter, D., Cohen, H.A. (1990). Incorporating knowledge via regularization theory: applications in vision and image processing. In: Barter, C.J., Brooks, M.J. (eds) AI '88. AI 1988. Lecture Notes in Computer Science, vol 406. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52062-7_91

Download citation

  • DOI: https://doi.org/10.1007/3-540-52062-7_91

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52062-7

  • Online ISBN: 978-3-540-46875-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics