Skip to main content

An efficient algorithm for the sparse mixed resultant

  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 673))

Abstract

We propose a compact formula for the mixed resultant of a system of n+1 sparse Laurent polynomials in n variables. Our approach is conceptually simple and geometric, in that it applies a mixed subdivision to the Minkowski Sum of the input Newton polytopes. It constructs a matrix whose determinant is a non-zero multiple of the resultant so that the latter can be defined as the GCD of n + 1 such determinants. For any specialization of the coefficients there are two methods which use one extra perturbation variable and return the resultant. Our algorithm is the first to present a determinantal formula for arbitrary systems; moreover, its complexity for unmixed systems is polynomial in the resultant degree. Further empirical results suggest that this is the most efficient method to date for sparse elimination.

Supported by a David and Lucile Packard Foundation Fellowship and by NSF Presidential Young Investigator Grant IRI-8958577.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein, D.N.: The number of roots of a system of equations. Funktsional'nyi Analiz i Ego Prilozheniya, 9(3):1–4, Jul–Sep 1975.

    Google Scholar 

  2. Betke, U.: Mixed volumes of polytopes. Arch. der Math., 58:388–391, 1992.

    Google Scholar 

  3. Canny, J.F.: The Complexity of Robot Motion Planning. M.I.T. Press, Cambridge, 1988.

    Google Scholar 

  4. Gel'fand, I.M., Kapranov, M.M. and Zelevinsky, A.V.: Discriminants of polynomials in several variables and triangulations of Newton polytopes. Algebra i Analiz, 2:1–62, 1990.

    Google Scholar 

  5. Huber, B. and Sturmfels, B.: Homotopies preserving the Newton polytopes. Manuscript, presented at the “Workshop on Real Algebraic Geometry”, August 1992.

    Google Scholar 

  6. Hurwitz, A.: Über die Trägheitsformen eines algebraischen Moduls. Annali di Mat., Tomo XX(Ser. III):113–151, 1913.

    Google Scholar 

  7. Kantor, J.M.: Sur le polynôme associé à un polytope à sommets entiers. Comptes rendues de l'Académie des Sciences, Série I, 314:669–672, 1992.

    Google Scholar 

  8. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica, 4:373–395, 1984.

    Google Scholar 

  9. Khovanskii, A.G.: Newton polyhedra and the genus of complete intersections. Funktsional'nyi Analiz i Ego Prilozheniya, 12(1):51–61, Jan–Mar 1978.

    Google Scholar 

  10. Kushnirenko, A.G.: The Newton polyhedron and the number of solutions of a system of k equations in k unknowns. Uspekhi Mat. Nauk., 30:266–267, 1975.

    Google Scholar 

  11. Kushnirenko, A.G.: Newton polytopes and the Bezout theorem. Funktsional'nyi Analiz i Ego Prilozheniya, 10(3), Jul–Sep 1976.

    Google Scholar 

  12. Loos, R.: Generalized polynomial remainder sequences. In B. Buchberger, G.E. Collins, and R. Loos, editors, Computer Algebra: Symbolic and Algebraic Computation, pages 115–137. Springer-Verlag, Wien, 2nd edition, 1982.

    Google Scholar 

  13. Macaulay, F.S.: Some formulae in elimination. Proc. London Math. Soc., 1(33):3–27, 1902.

    Google Scholar 

  14. Manocha, D. and Canny, J.: Real time inverse kinematics for general 6R manipulators. In Proc. IEEE Intern. Conf. Robotics and Automation, Nice, May 1992.

    Google Scholar 

  15. Pedersen, P. and Sturmfels, B.: Product formulas for sparse resultants. Manuscript, 1991.

    Google Scholar 

  16. Salmon, G.: Modern Higher Algebra. G.E. Stechert and Co., New York, 1885. reprinted 1924.

    Google Scholar 

  17. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27(4):701–717, 1980.

    Google Scholar 

  18. Stanley, R.P.: Decompositions of rational convex polyhedra. In J. Srivastava, editor, Combinatorial Mathematics, Optimal Designs and Their Applications, Annals of Discrete Math. 6, pages 333–342. North-Holland, Amsterdam, 1980.

    Google Scholar 

  19. Sturmfels, B.: Gröbner bases of toric varieties. Tôhoku Math. J., 43:249–261, 1991.

    Google Scholar 

  20. Sturmfels, B.: Sparse elimination theory. In D. Eisenbud and L. Robbiano, editors, Proc. Computat. Algebraic Geom. and Commut. Algebra, Cortona, Italy, June 1991. Cambridge Univ. Press. To appear.

    Google Scholar 

  21. Sturmfels, B.: Combinatorics of the sparse resultant. Technical Report 020-93, MSRI, Berkeley, November 1992.

    Google Scholar 

  22. Sturmfels, B. and Zelevinsky, A.: Multigraded resultants of Sylvester type. J. of Algebra. To appear. Also, Manuscript, 1991.

    Google Scholar 

  23. van der Waerden, B.L.: Modern Algebra. Ungar Publishing Co., New York, 3rd edition, 1950.

    Google Scholar 

  24. Weyman, J. and Zelevinsky, A.: Determinantal formulas for multigraded resultants. Manuscript, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gérard Cohen Teo Mora Oscar Moreno

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Canny, J., Emiris, I. (1993). An efficient algorithm for the sparse mixed resultant. In: Cohen, G., Mora, T., Moreno, O. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1993. Lecture Notes in Computer Science, vol 673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56686-4_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-56686-4_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56686-1

  • Online ISBN: 978-3-540-47630-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics