Skip to main content

On mathematical modeling in robotics

  • Conference paper
  • First Online:
Artificial Intelligence and Symbolic Mathematical Computing (AISMC 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 737))

Abstract

Some selected applications of mathematical modeling methods in the AI field robotics are presented in survey style by examples of geometric reasoning, topological reasoning and so-called fibered logical spaces for logical reasoning in robotics. The main perspective is on interaction and combination of different fields and methods from symbolic mathematical computation and AI and the mutual stimulation given by the various disciplines.

sponsored by the Austrian Ministry of Science and Research (BMWF), ESPRIT BRA 3125 ”MEDLAR”

The selected information material we presented here should illustrate the above mentioned aspects and, hopefully, contains some suggestions valuable for the reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Angeles. Rational Kinematics. Springer, New York-Berlin, 1988.

    Google Scholar 

  2. D.R. Baker. Some topological problems in robotics. Mathematical Intelligencer, 12:66–76, 1990.

    Google Scholar 

  3. J. Bochnak, M. Coste, and M-F. Roy. Géometrie algébrique réelle. Springer Verlag, 1987.

    Google Scholar 

  4. J.-D. Boissonat and J.-P. Laumond (eds.). Geometry and Robotics. Springer Verlag, 1989. Lecture Notes in Computer Science 391.

    Google Scholar 

  5. B. Buchberger. Gröbner bases: An algorithmic method in polynomial ideal theory. In Multidimensional Systems Theory (N.K.Bose, ed.), pages 184–232. D.Reidel Publ. Comp., Dordrecht-Boston-Lancaster, 1985.

    Google Scholar 

  6. B. Buchberger. Applications of Gröbner bases in non-linear computational geometry. Mathematical Aspects of Scientific Software (J.R.Rice, ed.), 14:59–87, 1987.

    Google Scholar 

  7. B. Buchberger, G. Collins, and B. Kutzler. Algebraic methods for geometric reasoning. Ann. Rev. Comput. Sci., 3:85–119, 1988.

    Google Scholar 

  8. J.W. Burdick. On the inverse kinematics of redundant manipulators: Characterization of the self-motion manifolds. IEEE, pages 264–270, 1989.

    Google Scholar 

  9. J.F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge Massachusetts and London, 1988.

    Google Scholar 

  10. G.E. Collins: Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition. Lecture Notes In Computer Science, 33:134–183, 1975.

    Google Scholar 

  11. J.J. Craig. Introduction to Robotics. Addison-Wesley Publ. Co., 1986.

    Google Scholar 

  12. F. Dargam, J. Pfalzgraf, V. Stahl, and K. Stokkermans. Towards a toolkit for benchmark scenarios in robot multi-tasking. Technical Report 91-45.0, RISC-Linz, J. Kepler University, Linz, Austria, 1991.

    Google Scholar 

  13. R. Eckmiller. Concerning the emerging role of geometry in neuroinformatics. In Parallel Processing in Neural Systems and Computers, Eckmiller, Hartmann, Hauske (eds.). Proceedings, Elsevier Sc. Publ (North-Holland), 1990.

    Google Scholar 

  14. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, 1987.

    Google Scholar 

  15. D. Gabbay. Labelled Deductive Systems, Part I. CIS, University of Munich, 1990. CIS-Bericht-90-22.

    Google Scholar 

  16. D.H. Gottlieb. Robots and fibre bundles. Bulletin de la Société Mathématique de Belgique, 38:219–223, 1987.

    Google Scholar 

  17. D.H. Gottlieb. Topology and the robot arm. Acta Applicandae Mathematicae, 10:1–5, 1987.

    Google Scholar 

  18. J. Heinzelreiter and H. Mayr. Machining simulation and verification by efficient dynamic modeling. In 23rd ISATA, Int. Symp. on Automotive Technology and Automation, Dec. 3–7, Vienna, Austria, 1990.

    Google Scholar 

  19. P. Hintenaus. The inverse kinematics system — installation guide, user's manual, program documentation. RISC-Linz Report no 87-18.0, RISC-Linz, J. Kepler University, Linz, Austria, 1987.

    Google Scholar 

  20. H. Hong. Improvements in CAD-based quantifier elimination. PhD Thesis, Ohio State University, 1990.

    Google Scholar 

  21. J.E. Hopcroft. The impact of robotics on computer science. Communications of the ACM, 29:486–498, 1986.

    Google Scholar 

  22. D. Kapur and J.L. Mundy. Geometric Reasoning. MIT Press, Cambridge Massachusetts and London, 1989. Special Issue of AI.

    Google Scholar 

  23. A. Karger and J. Novák. Space Kinematics and Lie Groups Gordon and Breach Science Publishers, New York-London-Paris-Montreux, 1985.

    Google Scholar 

  24. U. Karras. On mathematics in robotics. Lecture Notes (in German), DMV Seminar on Mathematics in Robotics; held in Blaubeuren, November, 1988.

    Google Scholar 

  25. O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Internat. J. of Robotics Research, 5:90–98, 1986.

    Google Scholar 

  26. D.E. Koditschek. Exact robot navigation by means of potential functions: Some topological considerations. In Proceed. IEEE Int. Conf. on Robotics and Automation, 1987.

    Google Scholar 

  27. H. Mayr, M. Held, and H. Öllinger. SMART-A Universal System for the Simulation of Robot and Machining Tasks. In CAPE'89, Tokyo, Japan, 1989.

    Google Scholar 

  28. J.M. McCarthy. An Introduction to Theoretical Kinematics. MIT Press, Cambridge Massachusetts and London, 1990.

    Google Scholar 

  29. K. Mehlhorn. Data Structures and Algorithms, Vol. 1–3. Springer Verlag, 1984.

    Google Scholar 

  30. R.P. Paul. Robot Manipulators. MIT Press, Cambridge Massachusetts and London, 1982.

    Google Scholar 

  31. J. Pfalzgraf. Logical fiberings and polycontextural systems. In Fundamentals of Artificial Intelligence Research, Ph. Jorrand, J.Kelemen (eds.). Lecture Notes in Computer Science 535, Subseries in AI, Springer Verlag, 1991.

    Google Scholar 

  32. J. Pfalzgraf. Neural Networks in Robotics Simulation. In: Symbolic Computation Tools for Technological Applications, J. Heinzelreiter et.al. In Proceedings IFAC Symposium on Robotics Control (SYROCO'91), Vienna, Austria, 1991.

    Google Scholar 

  33. J. Pfalzgraf. On geometric and topological reasoning in robotics to be submitted to Annals of Math and AI, 1992.

    Google Scholar 

  34. J. Pfalzgraf, K. Stokkermans, and D. Wang. The robotics benchmark. Proc. 12-month MEDLAR Workshop (Weinberg Castle, Austria, November 4–7), 1990.

    Google Scholar 

  35. F.P. Preparata and M.I. Shamos. Computational Geometry. Springer Verlag, 1985.

    Google Scholar 

  36. J.H. Reif and J.A. Storer. 3-dimensional shortest paths in the presence of polyhedral obstacles. In Mathematical Foundations of Computer Science 1988. Proceedings. Lecture Notes in Computer Science 324, 1988.

    Google Scholar 

  37. J.T. Schwartz, M. Sharir, and J. Hopcroft. Planning, Geometry, and Complexity of Robot Motion. Ablex Publishing, Norwood New Jersey, 1987.

    Google Scholar 

  38. S. Stifter. An axiomatic approach to voronoi-diagrams in 3D. J. of Computer and System Sciences, 43:361–379, 1991.

    Google Scholar 

  39. D.M. Wang. Reasoning about geometric problems using algebraic methods. proc. medlar 24-month review workshop, grenoble, december 1991. Technical Report 91-51.0, RISC-Linz, J. Kepler University, Linz, Austria, 1991.

    Google Scholar 

  40. W.T. Wu. Basic principles of mechanical theorem proving in elementary geometries. J. Automated Reasoning, 2:221–252, 1986.

    Google Scholar 

  41. C-K. Yap. An O(n log n) algorithm for the voronoi diagram of a set of simple curve segments. Discrete Comput. Geom., 2:365–393, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Calmet John A. Campbell

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pfalzgraf, J. (1993). On mathematical modeling in robotics. In: Calmet, J., Campbell, J.A. (eds) Artificial Intelligence and Symbolic Mathematical Computing. AISMC 1992. Lecture Notes in Computer Science, vol 737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57322-4_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-57322-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57322-7

  • Online ISBN: 978-3-540-48063-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics