Skip to main content

On polynomial ideals, their complexity, and applications

  • Invited Lectures
  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 965))

Included in the following conference series:

  • 184 Accesses

Abstract

A polynomial ideal membership problem is a (w+1)-tuple P=(f, g 1 ,g 2 , ..., g w ) where f and the g i are multivariate polynomials over some ring, and the problem is to determine whether f is in the ideal generated by the g i . For polynomials over the integers or rationals, it is known that this problem is exponential space complete. We discuss complexity results known for a number of problems related to polynomial ideals, like the word problem for commutative semigroups, a quantitative version of Hilbert's Nullstellensatz, and the reachability and other problems for (reversible) Petri nets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akira Aiba, Kô Sakai, Yosuke Sato, David J. Hawley, and Ryuzo Hasegawa. Constrained logic programming language CAL. In Proceedings of the International Conference on Fifth Generation Computer Systems 1988 (Tokyo, Japan, November/December 1988), volume 1, pages 263–276. Institute for New Generation Computer Technology, ICOT, 1988.

    Google Scholar 

  2. Carlos Berenstein and Alain Yger. Bounds for the degrees in the division problem. Michigan Math. J., 37(1):25–43, 1990.

    Google Scholar 

  3. W. Dale Brownawell. Bounds for the degrees in the Nullstellensatz. Ann. of Math., 126:577–591, 1987.

    Google Scholar 

  4. Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.d. thesis, Department of Mathematics, University of Innsbruck, 1965.

    Google Scholar 

  5. Bruno Buchberger. Gröbner bases: An algorithmic method in polynomial ideal theory. In N.K. Bose, editor, Multidimensional systems theory, pages 184–232. D. Reidel Publishing Company, Dordrecht-Boston-London, 1985.

    Google Scholar 

  6. Léandro Caniglia, André Galligo, and Joos Heintz. Some new effectivity bounds in computational geometry. In Proceedings of AAECC-6 (Roma, 1988), volume 357 of LNCS, pages 131–152, Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong-Barcelona-Budapest, 1988. Springer-Verlag.

    Google Scholar 

  7. E. Cardoza, R. Lipton, and A.R. Meyer. Exponential space complete problems for Petri nets and commutative semigroups. In Proceedings of the 8th Ann. ACM Symposium on Theory of Computing (Hershey, PA), pages 50–54, New York, 1976. ACM, ACM Press.

    Google Scholar 

  8. Edward W. Cardoza. Computational complexity of the word problem for commutative semigroups. Technical Memorandum TM 67, Project MAC, M.I.T., October 1975.

    Google Scholar 

  9. David Cox, John Little, and Donal O'Shea. Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra. Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong-Barcelona-Budapest, 1992.

    Google Scholar 

  10. Thomas W. Dubé. The structure of polynomial ideals and Gröbner bases. SIAM J. Comput., 19:750–773, 1990.

    Google Scholar 

  11. Samuel Eilenberg and M.P. Schützenberger. Rational sets in commutative monoids. J. Algebra, 13:173–191, 1969.

    Article  Google Scholar 

  12. David Eisenbud and Lorenzo Robbiano, editors. Computational algebraic geometry and commutative algebra, volume XXXIV of Symposia Mathematica. Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  13. David Eisenbud and Bernd Sturmfels. Binomial ideals, June 1994.

    Google Scholar 

  14. S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of the 10th Ann. ACM Symposium on Theory of Computing (San Diego, CA), pages 114–118, New York, 1978. ACM, ACM Press.

    Google Scholar 

  15. Marc Giusti, Joos Heintz, and Juan Sabia. On the efficiency of effective Nullstellensätze. Comput. Complexity, 3:56–95, 1993.

    Google Scholar 

  16. Grete Hermann. Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann., 95:736–788, 1926.

    Article  Google Scholar 

  17. Heisuke Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero: I. Ann. of Math., 79(1):109–203, 1964.

    Google Scholar 

  18. Heisuke Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero: II. Ann. of Math., 79(2):205–326, 1964.

    Google Scholar 

  19. D.T. Huynh. The complexity of the equivalence problem for commutative semigroups and symmetric vector addition systems. In Proceedings of the 17th Ann. ACM Symposium on Theory of Computing (Providence, RI), pages 405–412, New York, 1985. ACM, ACM Press.

    Google Scholar 

  20. D.T. Huynh. A superexponential lower bound for Gröbner bases and Church-Rosser commutative Thue systems. Inf. Control, 68(1–3):196–206, 1986.

    Google Scholar 

  21. J. Kollár. Sharp effective Nullstellensatz. J. Amer. Math. Soc., 1:963–975, 1988.

    Google Scholar 

  22. Ulla Koppenhagen and Ernst W. Mayr. The complexity of the boundedness, coverability, and selfcoverability problems for commutative semigroups. Technical Report TUM-I9518, Institut für Informatik, Technische Universität München, May 1995.

    Google Scholar 

  23. Richard Lipton. The reachability problem requires exponential space. Research Report 62, Computer Science Dept., Yale University, January 1976.

    Google Scholar 

  24. Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In Proceedings of the 13th Ann. ACM Symposium on Theory of Computing (Milwaukee, WI), pages 238–246, New York, 1981. ACM, ACM Press.

    Google Scholar 

  25. Ernst W. Mayr. An algorithm for the general Petri net reachability problem. SIAM J. Comput., 13(3):441–460, August 1984.

    Article  Google Scholar 

  26. Ernst W. Mayr. Membership in polynomial ideals over Q is exponential space complete. In B. Monien and R. Cori, editors, Proceedings of the 6th Annual Symposium on Theoretical Aspects of Computer Science (Paderborn, FRG, February 1989), volume LNCS 349, pages 400–406, Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong, 1989. GI, afcet, Springer-Verlag.

    Google Scholar 

  27. Ernst W. Mayr. Polynomial Ideals and Applications. Mitteilungen der Mathematischen Gesellschaft in Hamburg, XII(4):1207–1215, 1992. Festschrift zum 300jährigen Bestehen der Gesellschaft.

    Google Scholar 

  28. Ernst W. Mayr and Albert Meyer. The complexity of the word problems for commutative semigroups and polynomial ideals. Adv. Math., 46(3):305–329, December 1982.

    Google Scholar 

  29. Marvin L. Minsky. Computation: Finite and infinite machines. Prentice-Hall, Englewood Cliffs, 1967.

    Google Scholar 

  30. V. Pan. Complexity of parallel matrix computations. Theor. Comput. Sci., 54(1):65–85, September 1987.

    Google Scholar 

  31. C.A. Petri. Kommunikation mit Automaten. Technical Report 2, Institut für Instrumentelle Mathematik, Bonn, 1962.

    Google Scholar 

  32. E. Post. Recursive unsolvability of a problem of Thue. J. Symbolic Logic, 12:1–11, 1947.

    Google Scholar 

  33. Fred Richman. Constructive aspects of Noetherian rings. In Proceedings of the American Math. Society, volume 44, pages 436–441, June 1974.

    Google Scholar 

  34. A. Seidenberg. Constructions in algebra. Trans. Am. Math. Soc., 197:273–313, 1974.

    Google Scholar 

  35. Chee K. Yap. A new lower bound construction for commutative Thue systems, with applications. J. Symbolic Comput., 12:1–28, 1991.

    Google Scholar 

  36. Oscar Zariski and Pierre Samuel. Commutative algebra. Volume I. Van Nostrand Reinhold Company, New York-Cincinnati-Toronto-London-Melbourne, 1958. The University Series in Higher Mathematics.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Horst Reichel

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mayr, E.W. (1995). On polynomial ideals, their complexity, and applications. In: Reichel, H. (eds) Fundamentals of Computation Theory. FCT 1995. Lecture Notes in Computer Science, vol 965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60249-6_42

Download citation

  • DOI: https://doi.org/10.1007/3-540-60249-6_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60249-1

  • Online ISBN: 978-3-540-44770-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics