Skip to main content

Restoration of SAR images using recovery of discontinuities and non-linear optimization

  • Contours and Deformable Models
  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1223))

Abstract

In this paper, we study the behaviour of contour recovery when filtering radar images. We start from recent methods lying on an equivalence scheme between implicit and explicit boundary processes in image restoration [1, 2]. Here we extend them to the processing of synthetic aperture radar (SAR) images. First we set up a general bayesian frame enabling recovery of discontinuities in such restoration methods. Then we exhibit an extension of the Geman-Reynolds-Charbonnier theorem allowing convenient filtering of SAR images. Due to the high dynamics of radar ERS-1 images, a deterministic algorithm is proposed integrating different statistical hypotheses for observation and regularization parts. Besides, we use a well-adapted SAR edge detector instead of the usual gradient in the boundary estimation step of an iterative boundary/intensity restoration algorithm. Intensities are then estimated with a deterministic non-linear method. Finally, the particular behaviour or radar statistics (χ law) lead us to define a new potential function adapted to speckle regularization while respecting region discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Geman and G. Reynolds. Constrained restoration and the recovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(3), March 1992.

    Google Scholar 

  2. P. Charbonnier, L. Blanc-Féraud, G. Aubert and M. Barlaud. Deterministic Edge-Preserving Regularization in Computed Imaging. IEEE Transactions on Image Processing, 5(12):1–13, 1996.

    Google Scholar 

  3. A. Blake and A. Zissermann. Visual Reconstruction. MIT Press, 1987.

    Google Scholar 

  4. M. Nikolova, A. Mohammad-Djaffari, and J. Idier. Inversion of large-support illconditioned linear operators using a markov model with a line process. IEEE Transactions on Acoustic Speech and Signal Processing, 5:357–360, 1994.

    Google Scholar 

  5. J. Zerubia and R. Chellapa. Mean Field Annealing for Edge Detection and Image Restoration. Signal Processing V: Theories and Applications. L. Torres, E. Masgrau and M.A. Lagunas (eds.) Elsevier Science Publishers B.V. 837–840, 1990.

    Google Scholar 

  6. D. Geiger and F. Girosi. Parallel and deterministic algorithms from MRF's: surface reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(5), 1991.

    Google Scholar 

  7. Geometry-Driven Diffusion in Computer Vision. Editor: Bart M. ter Haar Romeny, Kluwer Academic Publishers, 1994.

    Google Scholar 

  8. S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–741, 1984.

    Google Scholar 

  9. L. Bedini, I. Gerace, and A. Tonazzini. A deterministic algorithm for reconstructing images with interactive discontinuities. Computer Vision and Graphics Image Processing: Graphical Models and Image Processing, 56(2):109–123, 1993.

    Google Scholar 

  10. J.-S. Lee. Speckle analysis and smoothing of synthetic aperture radar images. Computer Graphics and Image Processing, 17:24–32, 1981.

    Google Scholar 

  11. Kuan, Sawchuk, Strand, and Chavel. Adaptive restoration of images with speckle. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-35(3):373–383, 1987.

    Google Scholar 

  12. Y. Wu and H. MaÎtre. Smoothing speckled synthetic aperture radar images by using maximum homogeneous region filters. Optical Engineering, 31(8): 1785–1792, 1992.

    Google Scholar 

  13. A. Lopes, E. Nezry, R. Touzi, and H. Laur. Structure detection, and statistical adaptive filtering in SAR images. Int. J. Remote Sensing, 14(9):1735–1758, 1993.

    Google Scholar 

  14. F.-K. Li, C. Croft, and D. N. Held. Comparison of several techniques to obtain multiple-look SAR imagery. IEEE Transactions on Geoscience and Remote sensing, GE-21(3):370–375, July 1983.

    Google Scholar 

  15. J.W Goodman. Statistical properties of laser speckle patterns. In Laser Speckle and Related Phenomena, volume 9, pages 9–75. J.C Dainty (Springer Verlag, Heidelberg, 1975), 1975.

    Google Scholar 

  16. M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover Publications, 1972.

    Google Scholar 

  17. E. Jakeman and Tough J. A. Generalized K distribution: a statistical model for weak scattering. J. Opt. Soc. Am., 4(9):1764–1772, 1987.

    Google Scholar 

  18. C. J. Oliver. A model for non-Rayleigh scattering statistics. Optica Acta, 31(6):701–722, 1984.

    Google Scholar 

  19. A. C. Bovik. On detecting edges in speckle imagery. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-36(10): 1618–1627, October 1988.

    Google Scholar 

  20. R. Touzi, A. Lopes, and P. Bousquet. A statistical and geometrical edge detector for SAR images. IEEE Transactions on Geoscience And Remote Sensing, TGARS-26(6):764–773, November 1988.

    Article  Google Scholar 

  21. J.W. Goodman. Some fundamental properties of speckle. Journal Optical Society of America, 66(11):1145–1150, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marcello Pelillo Edwin R. Hancock

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tupin, F., Sigelle, M., Chkeif, A., Véran, JP. (1997). Restoration of SAR images using recovery of discontinuities and non-linear optimization. In: Pelillo, M., Hancock, E.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 1997. Lecture Notes in Computer Science, vol 1223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62909-2_73

Download citation

  • DOI: https://doi.org/10.1007/3-540-62909-2_73

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62909-2

  • Online ISBN: 978-3-540-69042-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics