Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 715))

Abstract

It has become possible to assemble one-dimensional atom chains at stepped surfaces with atomic precision. These form a new class of materials for exploring electrons in one dimension. Theory predicts a radically different behavior compared to higher dimensions. The single-electron picture has to be abandoned, because electrons cannot avoid each other when moving along a line. This article gives an overview of the phenomena that have been observed for electrons in onedimensional chain structures, many of them quite unexpected, such as a fractional electron number per chain atom, a doublet of nearly half-filled bands instead of a single filled band, and spin-polarized bands in non-magnetic materials. First, the basic methods for analyzing electrons in atomic wire structures are outlined. Metal surfaces with free-electron-like surface states serve as model cases for explaining the quantization phenomena induced by steps and terraces. These self-assemble into lateral superlattices at vicinal surfaces. The periodicity can be tuned by the miscut angle. One can distinguish two regimes, i.e., quantum-well states con.ned within each terrace and superlattice states extending over the whole step array. Then, we move on to semiconductor surfaces, where metal atom chains and broken bond chains can be combined into more complex structures. The chain atoms are locked rigidly to the substrate, but the electrons near the Fermi level completely decouple from the substrate, because they lie in the band gap of the semiconductor. The dimensionality can be controlled by adjusting the step spacing with intra- and inter-chain coupling ratios ranging from 10 : 1 to > 70 : 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. H. Libe and D. C. Mattis (eds.) in: Mathematical Physics in One Dimension: Exactly Soluble Models of Interacting Particles (Academic, New York, 1966)

    Google Scholar 

  2. T. Giamarchi in: Quantum Physics in One Dimension (Oxford University Press, New Nork, 2004).

    MATH  Google Scholar 

  3. J. Solyom: Adv. Phys. 28, 201 (1979)

    Article  ADS  Google Scholar 

  4. K. Schönhammer in: Strong Interactions in Low Dimensions, ed. by D. Baeriswyl and L. Degiorgi (Klumer Academic Publishers, 2003) Ch.1 Section 5.2.

    Google Scholar 

  5. J. Voit: Rep. Prog. Phys. 58, 977 (1995)

    Article  ADS  Google Scholar 

  6. G. Gruner: Density Waves in Solids (Perseus Publishing, Cambridge, Massachusetts 1994)

    Google Scholar 

  7. P. M. Chaikin et al: J. Phys.-Condes. Matter 10, 11301 (1998)

    Article  ADS  Google Scholar 

  8. H. Ohnishi et al: Nature 395, 780 (1998)

    Article  ADS  Google Scholar 

  9. V. Rodrigues et al: Phys. Rev. Lett. 85, 4124 (2000)

    Article  ADS  Google Scholar 

  10. J. N. Crain and F. J. Himpsel, Appl. Phys. A 82, 431 (2006)

    Article  ADS  Google Scholar 

  11. J. N. Crain et al: Phys. Rev. Lett. 90, 176805 (2003)

    Article  ADS  Google Scholar 

  12. J. N. Crain et al: Phys. Rev. B 69, 125401 (2004)

    Article  ADS  Google Scholar 

  13. H. S. Yoon et al: Phys. Rev. Lett. 92, 096801 (2004)

    Article  ADS  Google Scholar 

  14. A. Vindigni et al: Appl. Phys. A 82, 385 (2006)

    Article  ADS  Google Scholar 

  15. A. Kirakosian et al: Surf. Sci. 498, L109 (2002)

    Article  ADS  Google Scholar 

  16. J. N. Crain et al: Phys. Rev. B 66, 205302 (2002)

    Article  ADS  Google Scholar 

  17. J.-L. Lin et al: Appl. Phys. Lett. 78, 829 (2001)

    Article  ADS  Google Scholar 

  18. N. Papageorgiou et al: Appl. Phys. Lett. 82, 2518 (2003)

    Article  ADS  Google Scholar 

  19. E. D. Williams: Surf. Sci. 299/300, 502 (1994)

    Article  ADS  Google Scholar 

  20. A. R. Bachmann et al: Phys. Rev. B 64, 153409 (2001)

    Article  ADS  Google Scholar 

  21. J. Lobo et al: Phys. Rev. Lett. 93, 137602 (2004)

    Article  ADS  Google Scholar 

  22. J. E. Ortega et al: Phys. Rev. B 72, 195416 (2005)

    Article  ADS  Google Scholar 

  23. J. E. Ortega et al: New Journal of Phys. 7, 101 (2005)

    Article  ADS  Google Scholar 

  24. A. Mugarza and J. E. Ortega: J. Phys. Cond. Mat. 15, S3281 (2003)

    Article  ADS  Google Scholar 

  25. A. Mugarza et al: J. of Phys. C 18, S27 (2006)

    Google Scholar 

  26. L. Bürgi et al: Phys. Rev. Lett. 81, 5370 (1998)

    Article  ADS  Google Scholar 

  27. A. Mugarza et al: Phys. Rev. B 67, 081404 (2003)

    Article  ADS  Google Scholar 

  28. J. Miao et al: Nature (London) 400, 342 (1999)

    Article  ADS  Google Scholar 

  29. M. Giesen et al: Phys. Rev. Lett. 82, 3101 (1999)

    Article  ADS  Google Scholar 

  30. K. Morgenstern et al: Phys. Rev. Lett. 89, 226801 (2002)

    Article  ADS  Google Scholar 

  31. F. Baumberger et al: Phys. Rev. Lett. 92, 16803 (2004)

    Article  ADS  Google Scholar 

  32. A. Mugarza et al: Phys. Rev. B 66, 245419 (2002)

    Article  ADS  Google Scholar 

  33. S. LaShell et al: Phys. Rev. Lett. 77, 3419 (1996)

    Article  ADS  Google Scholar 

  34. F. Reinert et al: Phys. Rev. B 63, 115415 (2001)

    Article  ADS  Google Scholar 

  35. F. Schiller et al: Phys. Rev. Lett. 95, 066805 (2005)

    Article  ADS  Google Scholar 

  36. M. Roth et al: Phys. Rev. Lett. 88, 096802 (2002)

    Article  ADS  Google Scholar 

  37. S. Smadici and R. M. Osgood: Phys. Rev. B 71, 165424 (2005)

    Article  ADS  Google Scholar 

  38. F. Schiller et al: Phys. Rev. Lett. 94, 016103 (2005)

    Article  ADS  Google Scholar 

  39. R. Eder and H. Winter: Phys. Rev. B 70, 085413 (2004)

    Article  ADS  Google Scholar 

  40. X. Y. Wang et al: Phys. Rev. B 56, 7665 (1997)

    Article  ADS  Google Scholar 

  41. S. Hasegawa et al: Prog. Surf. Sci. 60, 89 (1999)

    Article  ADS  Google Scholar 

  42. J. N. Crain et al: Phys. Rev. B 72, 045312 (2005)

    Article  ADS  Google Scholar 

  43. H. W. Yeom et al: Phys. Rev. Lett. 82, 4898-4901 (1999)

    Article  ADS  Google Scholar 

  44. J. R. Ahn et al: Phys. Rev. Lett. 93, 106401 (2004)

    Article  ADS  Google Scholar 

  45. P. Segovia et al: Nature 402, 504 (1999)

    Article  ADS  Google Scholar 

  46. A. Kirakosian et al: Appl. Phys. Lett. 79, 1608 (2001)

    Article  ADS  Google Scholar 

  47. J. Kuntze et al: Appl. Phys. Lett. 81, 2463 (2002)

    Article  ADS  Google Scholar 

  48. S. C. Erwin and H. H. Weitering: Phys. Rev. Lett. 81, 2296 (1998)

    Article  ADS  Google Scholar 

  49. D. Y. Petrovykh et al: Surf. Sci. 512, 269 (2002)

    Article  ADS  Google Scholar 

  50. R. Losio et al: Phys. Rev. Lett. 85, 808 (2000)

    Article  ADS  Google Scholar 

  51. S. C. Erwin: Phys. Rev. Lett. 91, 206101 (2003)

    Article  ADS  Google Scholar 

  52. J. L. McChesney et al: Phys. Rev. B 70, 195430 (2004)

    Article  ADS  Google Scholar 

  53. J. Viernow et al: Appl. Phys. Lett. 72, 948 (1998)

    Article  ADS  Google Scholar 

  54. J.-L. Lin et al: J. Appl. Phys. 84, 255 (1998)

    Article  ADS  Google Scholar 

  55. D. Sánchez-Portal and R. M. Martin: Surf. Sci. 532, 655 (2003)

    Article  Google Scholar 

  56. S. C. Erwin: unpublished.

    Google Scholar 

  57. I. K. Robinson et al: Phys. Rev. Lett. 88, 096104 (2002)

    Article  ADS  Google Scholar 

  58. D. Sánchez-Portal et al: Phys. Rev. B 65, 081401 (2002)

    Article  ADS  Google Scholar 

  59. R. I. G. Uhrberg et al: Phys. Rev. B 65, 081305(R) (2002)

    Google Scholar 

  60. Y. G. Ding et al: Phys. Rev. Lett. 67, 1454 (1991)

    Article  ADS  Google Scholar 

  61. H. Aizawa and M. Tsukada: Phys. Rev. B 59, 10923 (1999)

    Article  ADS  Google Scholar 

  62. R. Losio et al: Phys. Rev. B 61, 10845 (2000)

    Article  ADS  Google Scholar 

  63. J. Ortega et al: Phys. Rev. B 58, 4584 (1998)

    Article  ADS  Google Scholar 

  64. F. Flores et al: Surf. Rev. Lett. 4, 281 (1997)

    Article  Google Scholar 

  65. J.E. Demuth et al: Phys. Rev. Lett. 51, 2214 (1983)

    Article  ADS  Google Scholar 

  66. R. Schillinger et al: Phys. Rev. B 72, 115314 (2005)

    Article  ADS  Google Scholar 

  67. I. Barke et al: Phys. Rev. Lett., 96, 216801 (2006)

    Article  ADS  Google Scholar 

  68. J. N. Crain and D. T. Pierce: Science 307, 703 (2006)

    Article  ADS  Google Scholar 

  69. J. N. Crain et al: Phys. Rev. Lett. 96, 156801 (2006)

    Article  ADS  Google Scholar 

  70. D. Sánchez-Portal et al: Phys. Rev. Lett. 93, 146803 (2004)

    Article  ADS  Google Scholar 

  71. P. C. Snijders et al: Phys. Rev. Lett. 96, 076801 (2006)

    Article  ADS  Google Scholar 

  72. J. R. Ahn et al: Phys. Rev. Lett. 95, 196402 (2005)

    Article  ADS  Google Scholar 

  73. F. J. Himpsel et al: J. Phys. Chem. B 108, 14484 (2004)

    Article  Google Scholar 

  74. R. Bennewitz et al: Nanotechnology 13, 499 (2002)

    Article  ADS  Google Scholar 

  75. A. Kirakosian et al: Phys. Rev. B 67, 205412 (2003)

    Article  ADS  Google Scholar 

  76. R. Losio et al: Phys. Rev. Lett. 86, 4632 (2001)

    Article  ADS  Google Scholar 

  77. I. Barke, Fan Zheng, T. K. Rügheimer, and F. J. Himpsel, Phys. Rev. Lett. 97, 226405 (2006)

    Article  ADS  Google Scholar 

  78. H. W. Yeom et al: Phys. Rev. B 72, 035323 (2005)

    Article  ADS  Google Scholar 

  79. M. Schöck et al: Europhys. Lett. 74, 473 (2006)

    Article  ADS  Google Scholar 

  80. M. Krawiec et al: Phys. Rev. B 73, 075415 (2006)

    Article  ADS  Google Scholar 

  81. J. R. Ahn et al: Phys. Rev. Lett. 91, 196403 (2003)

    Article  ADS  Google Scholar 

  82. D. Gammon et al: Appl. Phys. Lett. 67, 2391 (1995)

    Article  ADS  Google Scholar 

  83. T. K Rügheimer et al: Phys. Rev. B, submitted

    Google Scholar 

  84. G. Lee et al: Phys. Rev. Lett. 95, 116103 (2005)

    Article  ADS  Google Scholar 

  85. C. Gonzales et al: Phys. Rev. Lett. 96, 136101 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ortega, J., Himpsel, F. (2007). Atomic Chains at Surfaces. In: Hüfner, S. (eds) Very High Resolution Photoelectron Spectroscopy. Lecture Notes in Physics, vol 715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68133-7_6

Download citation

Publish with us

Policies and ethics