Skip to main content

Deformation and Viscoelastic Behavior of Polymer Gels in Electric Fields

  • Chapter
  • First Online:
Neutron Spin Echo Spectroscopy Viscoelasticity Rheology

Part of the book series: Advances in Polymer Science ((POLYMER,volume 134))

Abstract

“Smart” polymer gels actively change their size, structure, or viscoelastic properties in response to external signals. The stimuli-responsive properties, indicating a kind of intelligence, offer the possibility of new gel-based technology. The article attempts to review the current status of our knowledge of electromechanical effects that take place in smart polymer gels. Deformation and the mechanism of polyelectrolyte gel behavior in electric fields are first studied experimentally and then theoretically. In particular, the swelling or bending is discussed in detail. Particulate composite gels whose modulus of elasticity can vary in electric fields are revealed as a new smart material. The driving force causing varying elastic modulus in electric fields is explained by a qualitative model based upon polarized particles. Finally, applications of the two electromechanical effects are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeRossi D, Kajiwara K, Osada Y, Yamauchi A (1991) Polymer gels. Plenum Press, New York

    Google Scholar 

  2. Tanaka T (1978) Phys Rev Lett 40: 820–823

    Article  CAS  Google Scholar 

  3. Tanaka T (1981) Sci Am 244: 110–123

    Article  Google Scholar 

  4. Hamlen RP, Kent CE, Shafer SN (1965) Nature 206: 1149–1150

    Article  CAS  Google Scholar 

  5. Fragala A, Enos J, LaConti A, Boyack J (1972) Electrochim Acta 17: 1507–1522

    Article  CAS  Google Scholar 

  6. Grodzinsky AJ, Shoenfeld NA (1977) Polymer 18: 435–443

    Article  CAS  Google Scholar 

  7. Shoenfeld NA, Grodzinsky AJ (1980) Biopolymers 19: 241–262

    Article  CAS  Google Scholar 

  8. Osada Y, Hasebe M (1985) Chem Lett 1285–1287

    Google Scholar 

  9. Kishi R, Osada Y (1989) J Chem Soc Faraday Trans 85: 655–662

    Article  CAS  Google Scholar 

  10. Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S (1982) Science 218: 467–469

    Article  CAS  Google Scholar 

  11. Hirotsu S (1985) Jpn J Appl Phys 24: 396–398

    CAS  Google Scholar 

  12. Shiga T, Kurauchi T (1985) Polymer Preprints Japan 34: 509

    Google Scholar 

  13. Shiga T, Kurauchi T (1990) J Appl Polym Sci 39: 2305–2320

    Article  CAS  Google Scholar 

  14. Doi M, Matsumoto M, Hirose Y (1992) Macromolecules 25: 5504–5511

    Article  CAS  Google Scholar 

  15. Irie M (1986) Macromolecules 19: 2476–2477

    Article  CAS  Google Scholar 

  16. Osada Y, Okuzaki O, Hori H (1992) Nature 355: 242–244

    Article  CAS  Google Scholar 

  17. Shinohara H, Aizawa M (1989) Jpn J Polym Sci Technol 46: 703–708

    CAS  Google Scholar 

  18. Tanaka H, Shiga T, Hirose Y, Okada A, Kurauchi T (1993) Jpn J Polym Sci Technol 50: 963–967

    CAS  Google Scholar 

  19. Nanavati C, Fernandez JM (1993) Science 259: 963–965

    Article  CAS  Google Scholar 

  20. Flory PJ (1953) Principles of Polymer Chemistry. Cornell Univ Press, Ithaca New York

    Google Scholar 

  21. Moore WJ (1977) Physical Chemistry, 4th edn. Tokyo Kagaki Doujin Tokyo

    Google Scholar 

  22. Hirose Y, Giannetti G, Marquardt J, Tanaka T (1992) J Phys Soc Jpn 61: 4085–4097

    Article  CAS  Google Scholar 

  23. Shiga T, Hirose Y, Okada A, Kurauchi T (1992) J Appl Polym Sci 46: 635–640

    Article  CAS  Google Scholar 

  24. Nanbu M (1983) Polymer Appl 32: 523–530

    CAS  Google Scholar 

  25. Hyon SH, Cha WI, Ikada Y (1989) Jpn J Polym Sci Technol 46: 673–680

    CAS  Google Scholar 

  26. Shiga T, Fukumori K, Hirose Y, Okada A, Kurauchi T (1994) J Appl Polym Sci 32: 85–90

    Article  CAS  Google Scholar 

  27. Suzuki M (1991) Int J Jpn Soc Prec Eng 25: 169–174

    CAS  Google Scholar 

  28. Shiga T, Hirose Y, Okada A, Kurauchi T (1992) J Appl Polym Sci 44: 249–252

    Article  Google Scholar 

  29. Shiga T, Hirose Y, Okada A, Kurauchi T (1993) J Intel Mater Systems Structures 4: 553–557

    Article  Google Scholar 

  30. Shiga T, Hirose Y, Okada A, Kurauchi T (1993) J Appl Polym Sci 47: 113–119

    Article  CAS  Google Scholar 

  31. Shiga T, Hirose Y, Okada A, Kurauchi T (1994) J Maters Sci 29: 5715–5718

    Article  CAS  Google Scholar 

  32. Hurty WC, Rubinstein MF (1968) Dynamics of structures. Prentice Hall, New York

    Google Scholar 

  33. Nakazawa H, Nagaya Z, Katoh H (1973) Zairyo rikigaku. Sangyo Tosho, Tokyo

    Google Scholar 

  34. Adriani PM, Gast AP (1988) Phys Fluids 31: 2757–2768

    Article  CAS  Google Scholar 

  35. Deinega YF, Vinogradov GV (1984) Rheologica Acta 23: 636–651

    Article  CAS  Google Scholar 

  36. Hill JC, van Steenkiste TH (1991) J Appl Phys 70: 1207–1211

    Article  Google Scholar 

  37. Halsey TC, Martin JE, Adolf D (1991) Phys Rev Lett 68: 1519–1522

    Article  Google Scholar 

  38. Winslow WM (1947) US Patent 2, 417, 850

    Google Scholar 

  39. Klass DL, Martinek TW (1967) J Appl Phys 38: 67–74

    Article  CAS  Google Scholar 

  40. Uejima H (1972) Jpn J Appl Phys 11: 319–325

    Article  CAS  Google Scholar 

  41. Stangroom JE (1983) Phys Technol 14: 290–292

    Article  CAS  Google Scholar 

  42. See H, Tamura H, Doi M (1993) J Phys D Appl Phys 26: 746–752

    Article  CAS  Google Scholar 

  43. Block H, Kelly JP, Watson T (1991) Spec Publ R Soc Chem 87: 151–173

    CAS  Google Scholar 

  44. Klingenberg DJ, van Swol F, Zukosky CF (1989) J Chem Phys 91: 7888–7895

    Article  CAS  Google Scholar 

  45. Whittle M (1990) J Non-Newtonian Fluid Mechs 37: 233–263

    Article  CAS  Google Scholar 

  46. See H, Doi M (1991) J Phys Soc Jpn 60: 2778–2782

    Article  CAS  Google Scholar 

  47. Takimoto Z (1992) J Rheol Soc Jpn 20: 95–100

    CAS  Google Scholar 

  48. Pohl HA (1978) Dielectrophoresis. Cambridge Univ Press, Cambridge, UK

    Google Scholar 

  49. Sprecher AF, Chen Y, Conrad H (1989) Proc 2nd Inter Conference on ER Fluids, 82–89

    Google Scholar 

  50. Shiga T, Ohta T, Hirose Y, Okada A, Kurauchi T (1991) Jpn J Polym Sci Tecnol 48: 47–51

    CAS  Google Scholar 

  51. Kumagai N (1987) Dengikigaku Kisoron. Ohm Book Company, Tokyo

    Google Scholar 

  52. Yamamoto S, Matsuoka T, Takahashi H, Kurauchi T (1992) J Rheol Soc Jpn 2056–60

    Google Scholar 

  53. Plonsey R, Collin RE (1961) Principles and application of electromagnetic fields. McGraw-Hill, New York

    Google Scholar 

  54. Shiga T, Ohta T, Hirose Y, Okada A, Kurauchi T (1993) J Maters Sci 28: 1293–1299

    Article  CAS  Google Scholar 

  55. Shiga T, Okada A, Kurauchi T (1993) Macromolecules 26: 6958–6963

    Article  CAS  Google Scholar 

  56. Shiga T, Okada A, Kurauchi T (1995) J Maters Sci Lett 14: 514–515

    Article  CAS  Google Scholar 

  57. Ishino Y, Hukuyama Y, Saitoh T (1992) Japanese Laid-open Patent Publication 211931–211992

    Google Scholar 

  58. Shiga T, Okada A, Kurauchi T (1995) J Appl Polym Sci 58: 787–792

    Article  CAS  Google Scholar 

  59. Fujikura Y, Kondou S, Hoshino H (1996) Polymer Preprints Jpn 45: 784

    Google Scholar 

  60. Moriya S, Adachi K, Kotaka K (1985) Polym Commun 26: 235–239

    CAS  Google Scholar 

  61. Venugopal G, Krause S, Wnek GE (1989) J Polym Sci Part C Polym Lett 27: 497–501.

    Article  CAS  Google Scholar 

  62. Serpico JM, Wnek GE, Krause S, Smith TW, Luca DJ, vanLaeken (1991) Macromolecules 24: 6879–6881

    Article  CAS  Google Scholar 

  63. Serpico JM, Wnek GE, Krause S, Smith TW, Luca DJ, vanLaeken (1992) Macromolecules 25: 6373–6374

    Article  CAS  Google Scholar 

  64. Amundson K, Helfand E, Davis DD, Quan X, Patel SS (1991) Macromolecules 24: 6546–6548

    Article  CAS  Google Scholar 

  65. Randall CA, Miyazaki S, More KL, Bhalla AS, Newnham RE (1993) J Mater Res 8: 899–905

    Article  CAS  Google Scholar 

  66. Bowen CP, Bhalla AS, Newnham RE, Randall (1994) J Mater Res 9: 781–788

    Article  CAS  Google Scholar 

  67. Trau M, Sankaran S, Saville DA, Aksay IA (1995) Nature 374: 437–439

    Article  CAS  Google Scholar 

  68. Eisenberg SR, Grodzinsky AJ (1984) J Membrane Sci 19: 173–194

    Article  CAS  Google Scholar 

  69. Kwon IC, Bae YH, Kim SW (1991) Nature 354: 291–293

    Article  CAS  Google Scholar 

  70. DeRossi D, Chiarelli P, Buzzigoli G, Domenici C, Lazzeri L (1986) Trans Am Soc Artif Inter Organs 17: 157–162

    Google Scholar 

  71. Suzuki M (1989) Proc Int Workshop on Intell Maters 307–312

    Google Scholar 

  72. Kurauchi T, Shiga T, Hirose Y, Okada A (1990) MRS Polym Symp Procs 171: 389–393

    CAS  Google Scholar 

  73. Shiga T, Hirose Y, Okada A, Kurauchi T (1989) Jpn J Polym Sci Technol 46: 709–713

    CAS  Google Scholar 

  74. Shiga T, Hirose Y, Okada A, Kurauchi T (1989) Proc 1st Jpn Inter SAMPE Symp. 659–663

    Google Scholar 

  75. Kurokawa Y, Mouri N, Nakai K, Hirose Y, Shiga T (1993) Japanese Laid-open Patent Publication 79534-1993

    Google Scholar 

  76. Maeno T (1992) Japanese Laid-open Patent Publication 107334-1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shiga, T. (1997). Deformation and Viscoelastic Behavior of Polymer Gels in Electric Fields. In: Neutron Spin Echo Spectroscopy Viscoelasticity Rheology. Advances in Polymer Science, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68449-2_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-68449-2_2

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62713-5

  • Online ISBN: 978-3-540-68449-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics