Skip to main content

Looking for Periodic Solutions of ODE Systems by the Normal Form Method

  • Conference paper
Differential Equations with Symbolic Computation

Part of the book series: Trends in Mathematics ((TM))

Abstract

We describe usage of the normal form method and corresponding computer algebra packages for building an approximation of local periodic solutions of nonlinear autonomous ordinary differential equations (ODEs). For illustration a number of systems are treated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, G. M. and Geer, J. F., Power series expansions for the frequency and period of the limit cycle of the van der Pol equation. SIAM J. Appl. Math. 42 (1983), 678–693.

    MathSciNet  Google Scholar 

  2. Arnold, V. I. and Anosov, D. V. (eds.), Dynamical Systems I. Encyclopaedia of Mathematical Sciences. Springer-Verlag, New York, 1988.

    Google Scholar 

  3. Bibikov, Yu. N., Local Theory of Nonlinear Analytic Ordinary Differential Equations. LNM 702, Springer-Verlag, New York, 1979.

    Google Scholar 

  4. Boege, W., Gebauer, R. and Kredel, H., Some examples for solving systems of algebraic equations by calculating Groebner bases. J. Symb. Comput. 1 (1986), 83–98.

    MathSciNet  Google Scholar 

  5. Bruno (Brjuno), A. D., Analytical form of differential equations I. Trans. Mosc. Mat. Soc. 25 (1971), 131–288.

    Google Scholar 

  6. Bruno (Brjuno), A. D., Analytical form of differential equations II. Trans. Mosc. Mat. Soc. 26 (1972), 199–239.

    MATH  Google Scholar 

  7. Bruno, A. D., Local Method in Nonlinear Differential Equations. Part I — The Local Method of Nonlinear Analyses of Differential Equations, Part II — The Sets of Analyticity of a Normalizing Transformation. Springer Series in Soviet Mathematics, Springer-Verlag, Berlin New York, 1989.

    Google Scholar 

  8. Bruno, A. D., Bifurcation of the periodic solutions in the case of a multiple pair of imaginary eigenvalues. Selecta Mathematica (formerly Sovietica) 12(1) (1993), 1–12.

    MATH  MathSciNet  Google Scholar 

  9. Bruno, A. D., The Restricted 3-Body Problem: Plane Periodic Orbits. De Gruyter Expositions in Mathematics, v. 17, De Gruyter, Berlin New York, 1994.

    Google Scholar 

  10. Bruno, A. D., Normal forms. J. Math. Comput. Simul. 45 (1998), 413–427.

    MATH  MathSciNet  Google Scholar 

  11. Bruno, A. D., The Power Geometry in Algebraic and Differential Equations. Elsevier, North-Holland, 2000.

    Google Scholar 

  12. Deprit, A., Canonical transformation depending on a small parameter. Celestial Mechanics 1(1) (1969), 12–30.

    Article  MATH  MathSciNet  Google Scholar 

  13. Edneral, V. F., Computer generation of normalizing transformation for systems of nonlinear ODE. Proceedings of the 1993 International Symposium on Symbolic and Algebraic Computation (Kiev, Ukraine, July 1993) (M. Bronstein, ed.), pp. 14–19. ACM Press, New York, 1993.

    Google Scholar 

  14. Edneral, V. F., Complex periodic solutions of autonomous ODE systems with analytical right sides near an equilibrium point. Fundamentalnaya i Prikladnaya Matematika 1(2) (1995), 393–398 (in Russian).

    MATH  MathSciNet  Google Scholar 

  15. Edneral, V. F., Computer evaluation of cyclicity in planar cubic system. Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Hawaii, USA, July 1997) (W. Küchlin, ed.), pp. 305–309. ACM Press, New York, 1997.

    Google Scholar 

  16. Edneral, V. F., A symbolic approximation of periodic solutions of the Henon-Heiles system by the normal form method. J. Math. Comput. Simul. 45 (1998), 445–463.

    MATH  MathSciNet  Google Scholar 

  17. Edneral, V. F., About normal form method. Proceedings of the Second Workshop on Computer Algebra in Scientific Computing (CASC’ 99, Munich, Germany, 1999) (Ganzha et al., eds.), pp. 51–66. Springer-Verlag, Berlin Heidelberg, 1999.

    Google Scholar 

  18. Edneral, V. F., Bifurcation analysis of low resonant case of the generalized Henon-Heiles system. Proceedengs of the Fourth Workshop on Computer Algebra in Scientific Computing (CASC 2001, Konstanz, Germany, 2001) (Ganzha et al., eds.), pp. 167–176. Springer-Verlag, Berlin Heidelberg, 2001.

    Google Scholar 

  19. Edneral, V. F., Periodic solutions of a cubic ODE system. Proceedings of the Fifth Workshop on Computer Algebra in Scientific Computing (CASC 2003, Passau, Germany, September 20–26, 2003) (Ganzha et al., eds.), pp. 77–80. Tech. Univ. München, Munich, 2003.

    Google Scholar 

  20. Edneral, V. F. and Khanin, R., Multivariate power series and normal form calculation in Mathematica. Proceedings of the Fifth Workshop on Computer Algebra in Scientific Computing (CASC 2002, Big Yalta, Ukraine, September 2002) (Ganzha et al., eds.), pp. 63–70. Tech. Univ. München, Munich, 2002.

    Google Scholar 

  21. Edneral, V. F. and Khanin, R., Application of the resonant normal form to high order nonlinear ODEs using MATHEMATICA. Nuclear Inst. and Methods in Physics Research A 502(2-3) (2003), 643–645.

    Google Scholar 

  22. Edneral, V. F. and Khanin, R., Investigation of the double pendulum system by the normal form method in MATHEMATICA. Programming and Computer Software 30(2) (2004), 115–117. Translated from Programmirovanie 30(2).

    Article  MathSciNet  Google Scholar 

  23. Edneral, V. F. and Khrustalev, O. A., The normalizing transformation for nonlinear systems of ODEs. The realization of the algorithm. Proceedings of International Conference on Computer Algebra and its Application in Theoretical Physics (USSR, Dubna, September 1985), pp. 219–224. JINR Publ., Dubna, 1985 (in Russian).

    Google Scholar 

  24. Edneral, V. F. and Khrustalev, O. A., Program for recasting ODE systems in normal form. Sov. J. Programmirovanie 5 (1992), 73–80 (in Russian).

    Google Scholar 

  25. Godziewski, K. and Maciejewski, A. J., Celest. Mech. Dyn. Astron. 49 (1990), 1.

    Google Scholar 

  26. Guckenheimer, J. and Holmes P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, New York, 1986.

    Google Scholar 

  27. Gustavson, A. G., On constructing formal integrals of a Hamiltonian system near an equilibrium point. Astronomical J. 71 (1966), 670–686.

    Google Scholar 

  28. Hassard, B. D., Kazarinoff, N. D. and Wan, Y. H., Theory and Applications of Hopf Bifurcation. Cambridge Univ. Press, Cambridge, 1981.

    Google Scholar 

  29. Hearn, A. C., REDUCE User’s Manual. Rand Publication, CP78, 1987.

    Google Scholar 

  30. Henon, M. and Heiles, C., The applicability of the third integral of motion: Some numerical experiments. Astronomical J. 69 (1964), 73–79.

    MathSciNet  Google Scholar 

  31. Hori, G. I., Theory of general perturbations with unspecified canonical variables. J. Japan Astron. Soc. 18(4) (1966), 287–296.

    Google Scholar 

  32. Ito, H., Convergence of Birkhoff normal forms for integrable systems. Comment. Math. Helv. 64 (1989), 412–461.

    MATH  MathSciNet  Google Scholar 

  33. Ito, H., Integrability of Hamiltonian systems and Birkhoff normal forms in the simple resonance case. Math. Ann. 292 (1992), 411–444.

    Article  MATH  MathSciNet  Google Scholar 

  34. Marsden, J. E., McCracken, M., The Hopf Bifurcation and Its Applications. Springer Applied Math. Series, v. 19, Springer-Verlag, New York, 1976.

    Google Scholar 

  35. Mersman, W. A., A new algorithm for Lie transformation. Celestial Mechanics 3(1) (1970), 81–89.

    Article  MATH  MathSciNet  Google Scholar 

  36. Rand, R. and Armbruster, D., Perturbation Methods, Bifurcation Theory and Computer Algebra. Springer-Verlag, New York, 1987.

    Google Scholar 

  37. Shevchenko, I. I. and Sokolsky, A. G., Algorithms for normalization of Hamiltonian systems by means of computer algebra. Comp. Phys. Comm. 77 (1993), 11–18.

    MathSciNet  Google Scholar 

  38. Vallier, L., An algorithm for the computation of normal forms and invariant manifolds. Proceedings of the 1993 International Symposium on Symbolic and Algebraic Computation (Kiev, Ukraine, July 1993) (M. Bronstein, ed.), pp. 225–233. ACM Press, New York, 1993.

    Google Scholar 

  39. Walcher, S., On differential equations in normal form. Math. Ann. 291 (1991), 293–314.

    Article  MATH  MathSciNet  Google Scholar 

  40. Walcher, S., On transformations into normal form. J. Math. Anal. Appl. 180 (1993), 617–632.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Edneral, V.F. (2005). Looking for Periodic Solutions of ODE Systems by the Normal Form Method. In: Wang, D., Zheng, Z. (eds) Differential Equations with Symbolic Computation. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7429-2_11

Download citation

Publish with us

Policies and ethics